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1 Scope of the Chapter

This chapter is concerned with methods for studying multivariate data. A multivariate dataset consists of
several variables recorded on a number of objects or individuals. Multivariate methods can be classified
as those that seek to examine the relationships between the variables (e.g., principal components), known
as variable-directed methods, and those that seek to examine the relationships between the objects (e.g.,
cluster analysis), known as individual-directed methods.

Multiple regression is not included in this chapter as it involves the relationship of a single variable,
known as the response variable, to the other variables in the dataset, the explanatory variables. Routines
for multiple regression are provided in Chapter g02.

2 Background to the Problems

2.1 Variable-directed Methods

Let the n by p data matrix consist of p variables, x1; x2; . . . ; xp, observed on n objects or individuals.
Variable-directed methods seek to examine the linear relationships between the p variables with the aim
of reducing the dimensionality of the problem. There are different methods depending on the structure of
the problem. Principal component analysis and factor analysis examine the relationships between all
the variables. If the individuals are classified into groups, then canonical variate analysis examines the
between group structure. If the variables can be considered as coming from two sets, then canonical
correlation analysis examines the relationships between the two sets of variables. All four methods are
based on an eigenvalue decomposition or a singular value decomposition (SVD) of an appropriate
matrix.

The above methods may reduce the dimensionality of the data from the original p variables to a smaller
number, k, of derived variables that adequately represent the data. In general, these k derived variables
will be unique only up to an orthogonal rotation. Therefore, it may be useful to see if there exists
suitable rotations of these variables that lead to a simple interpretation of the new variables in terms of
the original variables.

2.1.1 Principal component analysis

Principal component analysis finds new variables which are linear combinations of the p observed
variables so that they have maximum variation and are orthogonal (uncorrelated).

Let S be the p by p variance-covariance matrix of the n by p data matrix. A vector a1 of length p is
found such that

aT
1Sa1 is maximized subject to aT

1a1 ¼ 1:

The variable z1 ¼
Xp
i¼1

a1ixi is known as the first principal component and gives the linear combination of

the variables that gives the maximum variation. A second principal component, z2 ¼
Xp
i¼1

a2ixi, is found

such that

aT
2Sa2 is maximized subject to aT

2a2 ¼ 1 and aT
2a1 ¼ 0:

This gives the linear combination of variables, orthogonal to the first principal component, that gives the
maximum variation. Further principal components are derived in a similar way.

The vectors ai, for i ¼ 1; 2; . . . ; p, are the eigenvectors of the matrix S and associated with each
eigenvector is the eigenvalue, �2

i . The value of �2
i =
P
�2
i gives the proportion of variation explained by

the ith principal component. Alternatively, the ai can be considered as the right singular vectors in a
SVD of a scaled mean-centred data matrix. The singular values of the SVD are the �i-values.

Often fewer than p dimensions (principal components) are needed to represent most of the variation in
the data. A test on the smaller eigenvalues can be used to investigate the number of dimensions needed.
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The values of the principal component variables for the individuals are known as the principal
component scores. These can be standardized so that the variance of these scores for each principal
component is 1:0 or equal to the corresponding eigenvalue. The principal component scores correspond
to the left-hand singular vectors in the SVD.

2.1.2 Factor analysis

Let the p variables have variance-covariance matrix �. The aim of factor analysis is to account for the
covariances in these p variables in terms of a smaller number, k, of hypothetical variables or factors,
f1; f2; . . . ; fk. These are assumed to be independent and to have unit variance. The relationship between
the observed variables and the factors is given by the model

xi ¼
Xk
j¼1

�ijfj þ ei; i ¼ 1; 2; . . . ; p

where �ij , for i ¼ 1; 2; . . . ; p and j ¼ 1; 2; . . . ; k, are the factor loadings and ei, for i ¼ 1; 2; . . . ; p, are
independent random variables with variances  i. These represent the unique component of the variation
of each observed variable. The proportion of variation for each variable accounted for by the factors is
known as the communality.

The model for the variance-covariance matrix, �, can then be written as

� ¼ ��T þ �;

where � is the matrix of the factor loadings, �ij, and � is a diagonal matrix of the unique variances  i.

If it is assumed that both the k factors and the ei follow independent Normal distributions then the
parameters of the model, � and � , can be estimated by maximum likelihood, as described by Lawley
and Maxwell (1971). The computation of the maximum likelihood estimates is an iterative procedure
which involves computing the eigenvalues and eigenvectors of the matrix

S� ¼ ��1=2S��1=2;

where S is the sample variance-covariance matrix. Alternatively, the SVD of the matrix R��1=2 can be

used, where RTR ¼ S. When convergence has been achieved, the estimates �̂, of �, are obtained by
scaling the eigenvectors of S�. The use of maximum likelihood estimation means that likelihood ratio
tests can be constructed to test for the number of factors required.

Having found the estimates of the parameters of the model, the estimates of the values of the factors for
the individuals, the factor scores, can be computed. These involve the calculation of the factor score
coefficients. Two common methods of computing factor score coefficients are the regression method and
Bartlett’s method. Bartlett’s method gives unbiased estimates of the factor scores while the estimates
from the regression method are biased but have smaller variance; see Lawley and Maxwell (1971).

2.1.3 Canonical variate analysis

If the individuals can be classified into one of g groups, then canonical variate analysis finds the linear
combinations of the p variables that maximize the ratio of the between-group variation to the within-
group variation. These variables are known as canonical variates. As the canonical variates provide
discrimination between the groups, the method is also known as canonical discrimination.

The canonical variates can be calculated from the eigenvectors of the within-group sums of squares and
cross-products matrix or from the SVD of the matrix

V ¼ QT
xQg;

where Qg is an orthogonal matrix that defines the groups and Qx is the first p columns of the orthogonal
matrix Q from the QR decomposition of the data matrix with the variable means subtracted. If the data
matrix is not of full rank, the Qx matrix can be obtained from a SVD. If the SVD of V is

V ¼ Ux�UT
g ;
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then the nonzero elements (�i > 0) of the diagonal matrix � are the canonical correlations. The largest �i
is called the first canonical correlation and associated with it is the first canonical variate.

The eigenvalues, �2
i , of the within-group sums of squares matrix are given by

�2
i ¼

�2
i

1� �2
i

:

The value of 	i ¼ �2
i =
P
�2
i gives the proportion of variation explained by the ith canonical variate. The

values of the 	i give an indication as to how many canonical variates are needed to adequately describe
the data, i.e., the dimensionality of the problem. The number of dimensions can be investigated by
means of a test on the smaller canonical correlations.

The canonical variate loadings and the relationship between the original variables and the canonical
variates are calculated from the matrix Ux. This matrix is scaled so that the canonical variates have unit
variance.

2.1.4 Canonical correlation analysis

If the p variables can be considered as coming from two sets then canonical correlation analysis finds
linear combinations of the variables in each set, known as canonical variates, such that the correlations
between corresponding canonical variates for the two sets are maximized. Let the two sets of variables
be denoted by x and y, with px and py variables in each set respectively. Let the variance-covariance of
the dataset be

S ¼ Sxx Sxy
Syx Syy

� �

and let

� ¼ S�1
yy SyxS

�1
xx Sxy;

then the canonical correlations can be calculated from the eigenvalues of the matrix �. Alternatively, the
canonical correlations can be calculated by means of a SVD of the matrix

V ¼ QT
xQy;

where Qx is the first px columns of the orthogonal matrix Q from the QR decomposition of the
x-variables in the data matrix, and Qy is the first py columns of the Q matrix of the QR decomposition
of the y-variables in the data matrix. In both cases, the variable means are subtracted before the QR
decomposition is computed. If either set of variables is not of full rank, an SVD can be used instead of
the QR decomposition. If the SVD of V is

V ¼ Ux�UT
y ;

then the nonzero elements (�i > 0) of the diagonal matrix � are the canonical correlations. The largest �i
is called the first canonical correlation and associated with it is the first canonical variate. The
eigenvalues, �2

i , of the matrix � are given by

�2
i ¼

�2
i

1þ �2
i

:

The value of 	i ¼ �2
i =
P
�2
i gives the proportion of variation explained by the ith canonical variate. The

values of the 	i give an indication as to how many canonical variates are needed to adequately describe
the data, i.e., the dimensionality of the problem; this can also be investigated by means of a test on the
smaller values of the �2

i .

The relationship between the canonical variables and the original variables, the canonical variate
loadings, can be computed from the Ux and Uy matrices.

2.1.5 Rotations

There are two principal reasons for using rotations: either
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(a) simplifying the structure to aid interpretation of derived variables, or

(b) comparing two or more datasets or sets of derived variables.

The most common type of rotations used for (a) are orthogonal rotations. If � is the p by k loading
matrix from a variable-directed multivariate method, then the rotations are selected such that the
elements, ��ij, of the rotated loading matrix, ��, are either relatively large or small. The rotations may be

found by minimizing the criterion

V ¼
Xk
j¼1

Xp
i¼1

��ij

� �4
� �
p

Xk
j¼1

Xp
i¼1

��ij

� �2
 !2

where the constant, �, gives a family of rotations, with � ¼ 1 giving varimax rotations and � ¼ 0 giving
quartimax rotations.

Given an orthogonal rotation matrix X, a solution may be further simplified by removing the
orthogonality restriction with an oblique ProMax rotation. Let Y denote the matrix defined by a power
transformation of X, designed to increase high values in X and decrease low values. Then the ProMax
solution is based on a least squares fit of X to Y .

For (b) Procrustes rotations are used. Let A and B be two l by m matrices, which can be considered as
representing l points in m dimensions. One example is if A is the loading matrix from a variable-
directed multivariate method and B is a hypothesised pattern matrix. In order to try to match the points
in A and B there are three steps:

(i) translate so that centroids of both matrices are at the origin,

(ii) find a rotation that minimizes the sum of squared distances between corresponding points of the
matrices,

(iii) scale the matrices.

For a more detailed description, see Krzanowski (1990).

2.2 Individual-directed Methods

While dealing with the same n by p data matrix as variable-directed methods, the emphasis is the n
objects or individuals rather than the p variables. The methods are generally based on an n by n distance
or dissimilarity matrix such that the (k; j)th element gives a measure of how ‘far apart’ the individuals k
and j are. Alternatively, a similarity matrix can be used which measures how ‘close’ individuals are. The
form of the measure of distance or similarity will depend upon the form of the p variables. For
continuous variables it is usually assumed that some form of Euclidean distance is suitable. That is, for
xki and xji measured for individuals k and j on variable i respectively, the contribution to distance
between individuals k and j from variable i is given by

xki � xji
� �2

:

Often there will be a need to scale the variables to produce satisfactory distances. For discrete variables,
there are various measures of similarity or distance that can easily be computed. For example, for binary
data a measure of similarity could be

1 – if the individuals take the same value,

0 – otherwise.

Given a measure of distance between individuals, there are three basic tasks that can be performed.

(i) Group the individuals; that is, collect the individuals into groups so that those within a group are
closer to each other than they are to members of another group.

(ii) Classify individuals; that is, if some individuals are known to come from certain groups, allocate
individuals whose group membership is unknown, to the nearest group.

(iii) Map the individuals; that is, produce a multidimensional diagram in which the distances on the
diagram represent the distances between the individuals.
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In the above, (i) leads to cluster analysis, (ii) leads to discriminant analysis and (iii) leads to scaling
methods.

2.2.1 Hierarchical cluster analysis

Approaches for cluster analysis can be classified into two types: hierarchical and non-hierarchical.
Hierarchical cluster analysis produces a series of overlapping groups or clusters ranging from separate
individuals to one single cluster. For example, five individuals could be hierarchically clustered as
follows.

Step 1 1ð Þ 2ð Þ 3ð Þ 4ð Þ 5ð Þ
Step 2 1; 2ð Þ 3ð Þ 4ð Þ 5ð Þ
Step 3 1; 2ð Þ 3; 4ð Þ 5ð Þ
Step 4 1; 2ð Þ 3; 4; 5ð Þ
Step 5 1; 2; 3; 4; 5ð Þ

The clusters at a level are constructed from the clusters at a previous level. There are two basic
approaches to hierarchical cluster analysis: agglomerative methods which build up clusters starting from
individuals until there is only one cluster, or divisive methods which start with a single cluster and split
clusters until the individual level is reached. This chapter contains the more common agglomerative
methods.

The stages in a hierarchical cluster analysis are usually as follows.

(i) form a distance matrix;

(ii) use selected criterion to form hierarchy;

(iii) print cluster information in the form of a dendrogram or use information to form a set of clusters.

These three stages will be considered in turn.

(i) Form a distance matrix

For the n by p data matrix X, a general measure of the distance between object j and object k, djk,
is

djk ¼
Xp
i¼1

D xji=si; xki=si
� � !


;

where xji and xki are the j; ið Þth and k; ið Þth elements of X, si is a standardization for the ith
variable and D u; vð Þ is a suitable function. Three common distances for continuous variables are:

(a) Euclidean distance: D u; vð Þ ¼ u� vð Þ2 and 
 ¼ 1
2 .

(b) Euclidean squared distance: D u; vð Þ ¼ u� vð Þ2 and 
 ¼ 1.

(c) Absolute distance (city block metric): D u; vð Þ ¼ u� vj j and 
 ¼ 1.

The common standardizations are the standard deviation and the range. For dichotomous variables
there are a number of different measures (see Krzanowski (1990) and Everitt (1974)); these are
usually easy to compute. If the individuals in a cluster analysis are themselves variables, then a
suitable distance measure will be based on the correlation coefficient for continuous variables and
contingency table statistics for discrete data.

(ii) Form Hierarchy

Given a distance matrix for the n individuals, an agglomerative clustering method produces a
hierarchical tree by starting with n clusters, each with a single individual and then at each of n� 1
stages, merging two clusters to form a larger cluster until all individuals are in a single cluster. At
each stage, the two clusters that are nearest are merged to form a new cluster and a new distance
matrix is computed for the reduced number of clusters.

Methods differ as to how the distances between the new cluster and other clusters are computed. For
three clusters i, j and k, let ni, nj and nk be the number of objects in each cluster, and let dij, dik
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and djk be the distances between the clusters. If clusters j and k, are to be merged to give cluster jk,
then the distance from cluster i to cluster jk, di:jk, can be computed in the following ways.

(a) Single link or nearest neighbour: di:jk ¼ min dij; dik
� �

.

(b) Complete link or furthest neighbour: di:jk ¼ max dij; dik
� �

.

(c) Group average: di:jk ¼ nj
njþnkdij þ

nk
njþnkdik .

(d) Centroid: di:jk ¼ nj
njþnkdij þ

nk
njþnkdik �

njnk

njþnkð Þ2djk .

(e) Median: di:jk ¼ 1
2dij þ 1

2dik � 1
4djk .

(f) Minimum variance: di:jk ¼ ni þ nj
� �

dij þ ni þ nkð Þdik � nidjk
� 	

= ni þ nj þ nk
� �

.

For further details, see Everitt (1974) or Krzanowski (1990).

(iii) Produce Dendrogram and Clusters

Hierarchical cluster analysis can be represented by a tree that shows at which distance the clusters
merge. Such a tree is known as a dendrogram; see Everitt (1974) and Krzanowski (1990).

A simple example is

D
i
s
t
a
n
c
e

Individuals

54321

Figure 1

The end points of the dendrogram represent the individuals that have been clustered.

Alternatively, the information from the tree can be used to produce either a chosen number of
clusters or the clusters that exist at a given distance. The latter is equivalent to taking the
dendrogram and drawing a line across at a given distance to produce clusters.

2.2.2 Non-hierarchical clustering

Non-hierarchical cluster analysis usually forms a given number of clusters from the data. There is no
requirement that if first k� 1 and then k clusters were requested then the k� 1 clusters would be formed
from the k clusters.

Most non-hierarchical methods of cluster analysis seek to partition the set of individuals into a number
of clusters so as to optimize a criterion. The number of clusters is usually specified prior to the analysis.
One commonly used criterion is the within-cluster sum of squares. Given n individuals with p variables
measured on each individual, xij , for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; p, the within-cluster sum of
squares for K clusters is

SSc ¼
XK
k¼1

X
i2Sk

Xp
j¼1

xij � �xkj
� �2

;
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where Sk is the set of objects in the kth cluster and �xkj is the mean for the variable j over cluster k.
Starting with an initial allocation of individuals to clusters, the method then seeks to minimize SSc by a
series of re-allocations. This is often known as K-means clustering.

In the K-means case individuals belong to a single cluster and are excluded from all remaining clusters.
Alternatively, probabilities of cluster membership can be estimated and each cluster can have its own
distributional properties. For example, given an initial set of probabilities, the Normal (Gaussian)
mixture model uses the E–M method of Dempster et al. (1977) to maximize the sum of log-likelihoods
over K clusters for a given covariance model ranging from pooled variance to individual covariance
matrices.

2.2.3 Discriminant analysis

Discriminant analysis is concerned with the allocation of objects to ng groups on the basis of
observations on those objects using an allocation rule. This rule is computed from observations coming
from a training set in which group membership is known. The allocation rule is based on the distance
between the object and an estimate of the location of the groups. If p variables are observed and the
vector of means for the jth group in the training set are �xj then the usual measure of the distance of an
observation, xk, from the jth group mean is given by Mahalanobis squared distance

D2
kj ¼ xk � �xj

� �T
S�1
� xk � �xj
� �

;

where S� is either the within-group variance-covariance matrix, Sj, for the nj objects in the jth group, or
a pooled variance-covariance matrix, S, computed from all n objects from all groups where

S ¼

Xng
j¼1

nj � 1
� �

Sj

n� ng
� � :

If the within-group variance-covariance matrices can be assumed to be equal then the pooled variance-
covariance matrix can be used. This assumption can be tested using the test statistic

G ¼ C n� ng
� �

log Sj j �
Xng
j¼1

nj � 1
� �

log Sj


 

 !

;

where

C ¼ 1� 2p2 þ 3p� 1

6 pþ 1ð Þ ng � 1
� � Xng

j¼1

1

nj � 1
� �� 1

n� ng
� �

 !
:

For large n, G is approximately distributed as a �2 variable with 1
2p pþ 1ð Þ ng � 1

� �
degrees of freedom;

see Morrison (1967).

In addition to the distances, a set of prior probabilities of group membership, 	j , for j ¼ 1; 2; . . . ; ng,
may be used. The prior probabilities reflect your view as to the likelihood of the objects coming from the
different groups.

It is generally assumed that the p variables follow a multivariate Normal distribution with, for the jth
group, mean �j and variance-covariance matrix �j. If p xk j �j;�j

� �
is the probability of observing the

observation xk from group j, then the posterior probability of belonging to group j is

p j j xk; �j; �j

� �
/ p xk j �j;�j

� �
	j:

An observation is allocated to the group with the highest posterior probability.

In the estimative approach to discrimination, the parameters �j and �j in p j j xk; �j;�j

� �
are replaced

by their estimates calculated from the training set. If it is assumed that the within-group variance-
covariance matrices are equal then the linear discriminant function is obtained; otherwise if it is
assumed that the variance-covariance matrices are unequal then the quadratic discriminant function is
obtained.
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In the Bayesian predictive approach, a non-informative prior distribution is used for the parameters
giving the posterior distribution for the parameters from the training set, Xt, of, p �j; �j j Xt

� �
. A

predictive distribution is then obtained by integrating p j j xk; �j; �j

� �
p �j; �j j X
� �

over the parameter

space. This predictive distribution, p xk j Xtð Þ, then replaces p xk j �j; �j

� �
to give

p j j xk; �j; �j

� �
/ p xk j Xtð Þ	j:

In addition to allocating the objects to groups, an atypicality index for each object and for each group
can be computed. This represents the probability of obtaining an observation more typical of the group
than that observed. A high value of the atypicality index for all groups indicates that the observation
may in fact come from a group not represented in the training set.

Alternative approaches to discrimination are the use of canonical variates and logistic discrimination.
Canonical variate analysis is described above and as it seeks to find the directions that best discriminate
between groups these directions can also be used to allocate further observations. This can be viewed as
an extension of Fisher’s linear discriminant function. This approach does not assume that the data is
Normally distributed, but Fisher’s linear discriminant function may not perform well on non-Normal
data. In the case of two groups, logistic regression can be performed with the response variable
indicating the group allocation and the variables in the discriminant analysis being the explanatory
variables. Allocation can then be made on the basis of the fitted response value. This is known as logistic
discrimination and can be shown to be valid for a wide range of distributional assumptions.

2.2.4 Scaling methods

Scaling methods seek to represent the observed dissimilarities or distances between objects as distances
between points in Euclidean space. For example if the distances between objects A, B and C were 3, 4
and 5, the distances could be represented exactly by three points in two-dimensional space. Only their
relative positions would be important, the whole configuration of points could be rotated or shifted
without effecting the distances between the points. If a one-dimensional representation was required, the
‘best’ representation might give distances of 21

3; 3
1
3 and 52

3 , which may be an adequate representation. If
the distances were 3, 4 and 8 then these distances could not be exactly represented in Euclidean space,
even in two dimensions, the best representation being the three points in a straight line giving distances
3, 4 and 7.

In practice, the use of scaling methods has to decide upon the number of dimensions in which the data is
to be represented. The smaller the number the easier it will be to assimilate the information. The chosen
number of dimensions needs to give an adequate representation of the data but will often not give an
exact representation because either the number of chosen dimensions is too small or the data cannot be
represented in Euclidean space.

Two basic methods are available depending on the nature of the dissimilarities or distances being
analysed. If the distances can be assumed to satisfy the metric inequality

dij � dik þ dkj;

then the distances can be represented exactly by points in Euclidean space and the technique known as
metric scaling, classical scaling or principal coordinate analysis can be used. This technique involves the
computing of the eigenvalues of a matrix derived from the distance matrix. The eigenvectors
corresponding to the k largest positive eigenvalues gives the best k dimensions in which to represent the
objects. If there are negative eigenvalues then the distance matrix cannot be represented in Euclidean
space.

Instead of the above approach of requiring the distances from the points to match the distances from the
objects as closely as possible, sometimes only a rank order equivalence is required. That is, the ith
largest distance between objects should, as far as possible, be represented by the ith largest distance
between points. This would be appropriate when the dissimilarities are based on subjective rankings. For
example, if the objects were foods then a number of judges rank the foods for different qualities such as
taste and texture, the resulting distances would not necessarily obey the metric inequality, but the rank
order would be significant. Alternatively, by relaxing the requirement from matching distances to rank
order equivalence only, the number of dimensions required to represent the distance matrix may be
decreased. The requirement of rank order equivalence leads to non-metric or ordinal multidimensional
scaling. The criterion used to measure the closeness of the fitted distance matrix to the observed distance
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matrix is known as STRESS, which is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Xi�1

j¼1

d̂ij � ~dij

� �2

Xn
i¼1

Xi�1

j¼1

d̂2
ij

vuuuuuuuut ;

where d̂2
ij is the Euclidean squared distance between the computed points i and j, and ~dij is the fitted

distance obtained when d̂ij is monotonically regressed on the observed distances dij; that is, ~dij is

monotonic relative to dij and is obtained from d̂ij with the smallest number of changes. Thus STRESS is
a measure of by how much the set of points preserve the order of the distances in the original distance
matrix, and non-metric multidimensional scaling seeks to find the set of points that minimize the
STRESS.

3 Recommendations on Choice and Use of Available Functions

See Section 4 for a list of functions available in this Chapter.

Note also that nag_glm_binomial (g02gbc) will fit a logistic regression model and can be used for
logistic discrimination.

4 Functionality Index

Canonical correlation analysis .................................................................... nag_mv_canon_corr (g03adc)

Canonical variate analysis ........................................................................... nag_mv_canon_var (g03acc)

Cluster Analysis,
compute distance matrix ..................................................................... nag_mv_distance_mat (g03eac)
construct clusters following nag_mv_hierar_cluster_analysis (g03ecc)

..... nag_mv_cluster_indicator (g03ejc)
construct dendrogram following nag_mv_hierar_cluster_analysis (g03ecc)

..... nag_mv_dendrogram (g03ehc)
frees memory following nag_mv_dendrogram (g03ehc) ........................ nag_mv_dend_free (g03xzc)
Gaussian mixture model .............................................................. nag_mv_gaussian_mixture (g03gac)
hierarchical .......................................................................... nag_mv_hierar_cluster_analysis (g03ecc)
K-means ............................................................................ nag_mv_kmeans_cluster_analysis (g03efc)

Discriminant Analysis,
allocation of observations to groups, following nag_mv_discrim (g03dac)

..... nag_mv_discrim_group (g03dcc)
Mahalanobis squared distances, following nag_mv_discrim (g03dac)

..... nag_mv_discrim_mahaldist (g03dbc)
test for equality of within-group covariance matrices ............................... nag_mv_discrim (g03dac)

Factor Analysis,
factor score coefficients, following nag_mv_factor (g03cac) ................. nag_mv_fac_score (g03ccc)
maximum likelihood estimates of parameters ............................................... nag_mv_factor (g03cac)

Principal component analysis ...................................................................... nag_mv_prin_comp (g03aac)

Rotations,
orthogonal rotations for loading matrix .................................................. nag_mv_orthomax (g03bac)
Procustes rotations ................................................................................... nag_mv_procustes (g03bcc)
ProMax rotations ........................................................................................ nag_mv_promax (g03bdc)

Scaling Methods,
multidimensional scaling ...................................................... nag_mv_ordinal_multidimscale (g03fcc)
principal coordinate analysis ................................................... nag_mv_prin_coord_analysis (g03fac)
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Standardize values of a data matrix ............................................................... nag_mv_z_scores (g03zac)

5 Auxiliary Functions Associated with Library Function Arguments

None.

6 Functions Withdrawn or Scheduled for Withdrawal

None.
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