NAG Library Function Document nag mv prin comp (g03aac)

1 Purpose

nag_mv_prin_comp (g03aac) performs a principal component analysis on a data matrix; both the principal component loadings and the principal component scores are returned.

2 Specification

3 Description

Let X be an n by p data matrix of n observations on p variables x_1, x_2, \ldots, x_p and let the p by p variance-covariance matrix of x_1, x_2, \ldots, x_p be S. A vector a_1 of length p is found such that:

$$a_1^{\mathsf{T}} S a_1$$

is maximized subject to

$$a_1^{\mathrm{T}}a_1 = 1.$$

The variable $z_1 = \sum_{i=1}^p a_{1i} x_i$ is known as the first principal component and gives the linear combination of the variables that gives the maximum variation. A second principal component, $z_2 = \sum_{i=1}^p a_{2i} x_i$, is found such that:

$$a_2^{\mathsf{T}} S a_2$$

is maximized subject to

$$a_2^{\mathrm{T}}a_2 = 1$$

and

$$a_2^{\mathrm{T}}a_1 = 0.$$

This gives the linear combination of variables that is orthogonal to the first principal component that gives the maximum variation. Further principal components are derived in a similar way.

The vectors a_1, a_2, \ldots, a_p , are the eigenvectors of the matrix S and associated with each eigenvector is the eigenvalue, λ_i^2 . The value of $\lambda_i^2/\sum \lambda_i^2$ gives the proportion of variation explained by the ith principal component. Alternatively, the a_i 's can be considered as the right singular vectors in a singular value decomposition with singular values λ_i of the data matrix centred about its mean and scaled by $1/\sqrt{(n-1)}$, X_s . This latter approach is used in nag_mv_prin_comp (g03aac), with

$$X_s = V \Lambda P'$$

where Λ is a diagonal matrix with elements λ_i , P' is the p by p matrix with columns a_i and V is an n by p matrix with V'V = I, which gives the principal component scores.

Principal component analysis is often used to reduce the dimension of a dataset, replacing a large number of correlated variables with a smaller number of orthogonal variables that still contain most of the information in the original dataset.

g03aac NAG Library Manual

The choice of the number of dimensions required is usually based on the amount of variation accounted for by the leading principal components. If k principal components are selected, then a test of the equality of the remaining p-k eigenvalues is

$$(n - (2p + 5)/6) \left\{ -\sum_{i=k+1}^{p} \log \left(\lambda_i^2\right) + (p - k) \log \left(\sum_{i=k+1}^{p} \lambda_i^2/(p - k)\right) \right\}$$

which has, asymptotically, a χ^2 distribution with $\frac{1}{2}(p-k-1)(p-k+2)$ degrees of freedom.

Equality of the remaining eigenvalues indicates that if any more principal components are to be considered then they all should be considered.

Instead of the variance-covariance matrix the correlation matrix, the sums of squares and cross-products matrix or a standardized sums of squares and cross-products matrix may be used. In the last case S is replaced by $\sigma^{-1/2}S\sigma^{-1/2}$ for a diagonal matrix σ with positive elements. If the correlation matrix is used, the χ^2 approximation for the statistic given above is not valid.

The principal component scores, F, are the values of the principal component variables for the observations. These can be standardized so that the variance of these scores for each principal component is 1.0 or equal to the corresponding eigenvalue.

Weights can be used with the analysis, in which case the matrix X is first centred about the weighted means then each row is scaled by an amount $\sqrt{w_i}$, where w_i is the weight for the *i*th observation.

4 References

Chatfield C and Collins A J (1980) Introduction to Multivariate Analysis Chapman and Hall

Cooley W C and Lohnes P R (1971) Multivariate Data Analysis Wiley

Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl. **20(3)** 2–25

Kendall M G and Stuart A (1979) *The Advanced Theory of Statistics (3 Volumes)* (4th Edition) Griffin Morrison D F (1967) *Multivariate Statistical Methods* McGraw-Hill

5 Arguments

1: **pcmatrix** – Nag_PrinCompMat

Input

On entry: indicates for which type of matrix the principal component analysis is to be carried out.

pcmatrix = Nag_MatCorrelation

It is for the correlation matrix.

pcmatrix = Nag_MatStandardised

It is for the standardized matrix, with standardizations given by s.

pcmatrix = Nag_MatSumSq

It is for the sums of squares and cross-products matrix.

pcmatrix = Nag_MatVarCovar

It is for the variance-covariance matrix.

 $\label{lem:constraint:pcmatrix} \textbf{\textit{Pcmatrix}} = Nag_MatCorrelation, \ Nag_MatStandardised, \ Nag_MatSumSq \ or \ Nag_MatVarCovar.$

2: scores – Nag PrinCompScores

Input

On entry: specifies the type of principal component scores to be used.

scores = Nag_ScoresStand

The principal component scores are standardized so that F'F = I, i.e., $F = X_s P \Lambda^{-1} = V$.

g03aac.2 Mark 24

scores = Nag_ScoresNotStand

The principal component scores are unstandardized, i.e., $F = X_s P = V \Lambda$.

 $scores = Nag_ScoresUnitVar$

The principal component scores are standardized so that they have unit variance.

scores = Nag_ScoresEigenval

The principal component scores are standardized so that they have variance equal to the corresponding eigenvalue.

Constraint: scores = Nag_ScoresStand, Nag_ScoresNotStand, Nag_ScoresUnitVar or Nag_ScoresEigenval.

3: **n** – Integer

On entry: the number of observations, n.

Constraint: $\mathbf{n} \geq 2$.

4: \mathbf{m} – Integer Input

On entry: the number of variables in the data matrix, m.

Constraint: $\mathbf{m} \geq 1$.

5: $\mathbf{x}[\mathbf{n} \times \mathbf{t} \mathbf{d} \mathbf{x}] - \text{const double}$

Input

On entry: $\mathbf{x}[(i-1) \times \mathbf{tdx} + j - 1]$ must contain the *i*th observation for the *j*th variable, for i = 1, 2, ..., n and j = 1, 2, ..., m.

6: $\mathbf{tdx} - \text{Integer}$

On entry: the stride separating matrix column elements in the array \mathbf{x} .

Constraint: $\mathbf{tdx} \geq \mathbf{m}$.

7: isx[m] – const Integer

Input

On entry: $\mathbf{isx}[j-1]$ indicates whether or not the jth variable is to be included in the analysis. If $\mathbf{isx}[j-1] > 0$, then the variable contained in the jth column of \mathbf{x} is included in the principal component analysis, for $j = 1, 2, \dots, m$.

Constraint: isx[j-1] > 0 for **nvar** values of j.

8: $\mathbf{s}[\mathbf{m}]$ - double Input/Output

On entry: the standardizations to be used, if any.

If $pcmatrix = Nag_MatStandardised$, then the first m elements of s must contain the standardization coefficients, the diagonal elements of σ .

Constraint: if $\mathbf{isx}[j-1] > 0$, $\mathbf{s}[j-1] > 0.0$, for j = 1, 2, ..., m.

On exit: if $pcmatrix = Nag_MatStandardised$, then s is unchanged on exit.

If **pcmatrix** = Nag_MatCorrelation, then **s** contains the variances of the selected variables. $\mathbf{s}[j-1]$ contains the variance of the variable in the *j*th column of **x** if $\mathbf{isx}[j-1] > 0$.

If **pcmatrix** = Nag_MatSumSq or Nag_MatVarCovar, then s is not referenced.

9: $\mathbf{wt}[\mathbf{n}]$ – const double Input

On entry: optionally, the weights to be used in the principal component analysis.

If $\mathbf{wt}[i-1] = 0.0$, then the *i*th observation is not included in the analysis. The effective number of observations is the sum of the weights.

If weights are not provided then **wt** must be set to **NULL** and the effective number of observations is **n**.

Constraints:

if wt is not NULL, wt $[i-1] \ge 0.0$, for i = 1, 2, ..., n; if wt is not NULL, the sum of weights \ge nvar + 1.

10: **nvar** – Integer

Input

On entry: the number of variables in the principal component analysis, p.

Constraint: $1 \le nvar \le min(n-1, m)$.

11: $e[nvar \times tde] - double$

Output

On exit: the statistics of the principal component analysis. $\mathbf{e}[(i-1) \times \mathbf{tde}]$, the eigenvalues associated with the *i*th principal component, λ_i^2 , for $i=1,2,\ldots,p$.

 $e[(i-1) \times tde + 1]$, the proportion of variation explained by the *i*th principal component, for i = 1, 2, ..., p.

 $e[(i-1) \times tde + 2]$, the cumulative proportion of variation explained by the first *i* principal components, for i = 1, 2, ..., p.

 $\mathbf{e}[(i-1) \times \mathbf{tde} + 3]$, the χ^2 statistics, for $i = 1, 2, \dots, p$.

 $\mathbf{e}[(i-1) \times \mathbf{tde} + 4]$, the degrees of freedom for the χ^2 statistics, for $i = 1, 2, \dots, p$.

If **pcmatrix** \neq Nag_MatCorrelation, then $\mathbf{e}[(i-1) \times \mathbf{tde} + 5]$ contains the significance level for the χ^2 statistic, for i = 1, 2, ..., p.

If **pcmatrix** = Nag_MatCorrelation, then $e[(i-1) \times tde + 5]$ is returned as zero.

12: **tde** – Integer

Input

On entry: the stride separating matrix column elements in the array e.

Constraint: $tde \ge 6$.

13: $\mathbf{p}[\mathbf{nvar} \times \mathbf{tdp}] - \text{double}$

Output

Note: the (i, j)th element of the matrix P is stored in $\mathbf{p}[(i-1) \times \mathbf{tdp} + j - 1]$.

On exit: the first **nvar** columns of **p** contain the principal component loadings, a_i . The *j*th column of **p** contains the **nvar** coefficients for the *j*th principal component.

14: **tdp** – Integer

Input

On entry: the stride separating matrix column elements in the array **p**.

Constraint: $tdp \ge nvar$.

15: $\mathbf{v}[\mathbf{n} \times \mathbf{tdv}] - \text{double}$

Output

Note: the (i, j)th element of the matrix V is stored in $\mathbf{v}[(i-1) \times \mathbf{tdv} + j - 1]$.

On exit: the first **nvar** columns of **v** contain the principal component scores. The jth column of **v** contains the **n** scores for the jth principal component.

If weights are supplied in the array \mathbf{wt} , then any rows for which $\mathbf{wt}[i-1]$ is zero will be set to zero.

16: **tdv** – Integer

Input

On entry: the stride separating matrix column elements in the array v.

Constraint: $tdv \ge nvar$.

g03aac.4 Mark 24

17: **fail** – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE 2 INT ARG GE

On entry, $\mathbf{nvar} = \langle value \rangle$ while $\mathbf{n} = \langle value \rangle$. These arguments must satisfy $\mathbf{nvar} < \mathbf{n}$.

NE_2_INT_ARG_GT

On entry, $\mathbf{nvar} = \langle value \rangle$ while $\mathbf{m} = \langle value \rangle$. These arguments must satisfy $\mathbf{nvar} \leq \mathbf{m}$.

NE_2_INT_ARG_LT

```
On entry, \mathbf{tdp} = \langle value \rangle while \mathbf{nvar} = \langle value \rangle. These arguments must satisfy \mathbf{tdp} \geq \mathbf{nvar}.
```

On entry, $\mathbf{tdv} = \langle value \rangle$ while $\mathbf{nvar} = \langle value \rangle$. These arguments must satisfy $\mathbf{tdv} \geq \mathbf{nvar}$.

On entry, $\mathbf{tdx} = \langle value \rangle$ while $\mathbf{m} = \langle value \rangle$. These arguments must satisfy $\mathbf{tdx} \geq \mathbf{m}$.

NE ALLOC FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument pcmatrix had an illegal value.

On entry, argument scores had an illegal value.

NE_INT_ARG_LT

```
On entry, \mathbf{m} = \langle value \rangle.
```

Constraint: $\mathbf{m} \geq 1$.

On entry, $\mathbf{n} = \langle value \rangle$.

Constraint: $n \ge 2$.

On entry, $\mathbf{nvar} = \langle value \rangle$.

Constraint: $\mathbf{nvar} \geq 1$.

On entry, $\mathbf{tde} = \langle value \rangle$.

Constraint: $tde \ge 6$.

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

NE_NEG_WEIGHT_ELEMENT

```
On entry, \mathbf{wt}[\langle value \rangle] = \langle value \rangle.
```

Constraint: when referenced, all elements of wt must be non-negative.

NE_OBSERV_LT_VAR

With weighted data, the effective number of observations given by the sum of weights $= \langle value \rangle$, while the number of variables included in the analysis, $\mathbf{nvar} = \langle value \rangle$.

Constraint: effective number of observations $> \mathbf{nvar} + 1$.

NE_SVD_NOT_CONV

The singular value decomposition has failed to converge. This is an unlikely error exit.

g03aac NAG Library Manual

NE VAR INCL INDICATED

The number of variables, **nvar** in the analysis = $\langle value \rangle$, while the number of variables included in the analysis via array **isx** = $\langle value \rangle$.

Constraint: these two numbers must be the same.

NE VAR INCL STANDARD

On entry, the standardization element $\mathbf{s}[\langle value \rangle] = \langle value \rangle$, while the variable to be included $\mathbf{isx}[\langle value \rangle] = \langle value \rangle$.

Constraint: when a variable is to be included, the standardization element must be positive.

NE ZERO EIGVALS

All eigenvalues/singular values are zero. This will be caused by all the variables being constant.

7 Accuracy

As nag_mv_prin_comp (g03aac) uses a singular value decomposition of the data matrix, it will be less affected by ill-conditioned problems than traditional methods using the eigenvalue decomposition of the variance-covariance matrix.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

A dataset is taken from Cooley and Lohnes (1971), it consists of ten observations on three variables. The unweighted principal components based on the variance-covariance matrix are computed and unstandardized principal component scores requested.

10.1 Program Text

```
/* nag_mv_prin_comp (g03aac) Example Program.
 * Copyright 1998 Numerical Algorithms Group.
 * Mark 5, 1998.
 * Mark 8 revised, 2004.
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg03.h>
\#define X(I, J) x[(I) *tdx + J]
#define P(I, J) p[(I) *tdp + J] #define E(I, J) e[(I) *tde + J]
\#define\ V(I,\ J)\ v[(I)\ *tdv\ +\ J]
int main(void)
  Integer
                       exit_status = 0, i, *isx = 0, j, m, n, nvar, tde = 6, tdp,
                       tdv, tdx;
  Nag_PrinCompMat
                      matrix;
  Nag_PrinCompScores scores;
  Nag_Boolean
                       weight;
```

g03aac.6 Mark 24

```
char
                    nag_enum_arg[40];
double
                    *e = 0, *p = 0, *s = 0, *v = 0, *wt = 0, *wtptr = 0;
                    *x = 0;
double
NagError
                    fail;
INIT_FAIL(fail);
printf("nag mv prin comp (q03aac) Example Program Results\n\n");
/* Skip heading in data file */
scanf("%*[^\n]");
scanf("%39s", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
 */
matrix = (Nag_PrinCompMat) nag_enum_name_to_value(nag_enum_arg);
scanf("%39s", nag_enum_arg);
scores = (Nag_PrinCompScores) nag_enum_name_to_value(nag_enum_arg);
scanf("%39s", nag_enum_arg);
weight = (Nag_Boolean) nag_enum_name_to_value(nag_enum_arg);
scanf("%ld", &n);
scanf("%ld", &m);
if (n \ge 2 \&\& m \ge 1)
    if (!(x = NAG\_ALLOC((n)*(m), double)) | |
        !(wt = NAG_ALLOC(n, double)) ||
        !(s = NAG_ALLOC(m, double)) ||
        !(isx = NAG_ALLOC(m, Integer)))
        printf("Allocation failure\n");
        exit_status = -1;
        goto END;
    tdx = m;
  }
else
  {
    printf("Invalid n or m.\n");
    exit_status = 1;
    return exit_status;
if (!weight)
  {
    for (i = 0; i < n; ++i)
        for (j = 0; j < m; ++j)
          scanf("%lf", &X(i, j));
  }
else
    for (i = 0; i < n; ++i)
        for (j = 0; j < m; ++j)
  scanf("%lf", &X(i, j));</pre>
        scanf("%lf", &wt[i]);
    wtptr = wt;
for (j = 0; j < m; ++j)
  {
    scanf("%ld", &isx[j]);
scanf("%ld", &nvar);
if (nvar >= 1 \&\& nvar <= MIN(n-1, m))
    if (!(p = NAG_ALLOC(nvar*nvar, double)) ||
        !(e = NAG_ALLOC(nvar*6, double)) ||
        !(v = NAG_ALLOC(n*nvar, double)))
      {
```

}

```
printf("Allocation failure\n");
         exit_status = -1;
         goto END;
     tdp = nvar;
     tde = 6;
     tdv = nvar;
 else
     printf("Invalid nvar.\n");
     exit_status = 1;
     goto END;
 if (matrix == Nag_MatStandardised)
     for (j = 0; j < m; ++j)
       scanf("%lf", &s[j]);
 /* nag_mv_prin_comp (g03aac).
  * Principal component analysis
 nag_mv_prin_comp(matrix, scores, n, m, x, tdx, isx, s, wtptr, nvar,
 e, tde, p, tdp, v, tdv, &fail); if (fail.code != NE_NOERROR)
     printf("Error from nag_mv_prin_comp (g03aac).\n%s\n",
             fail.message);
     exit_status = 1;
     goto END;
         "Eigenvalues Percentage Cumulative Chisq DF Sign");
 printf("
                        variation variation\n\n");
 for (i = 0; i < nvar; ++i)
     for (j = 0; j < 6; ++j)
      printf("%11.4f", E(i, j));
     printf("\n");
 printf("\nPrincipal component loadings \n\n");
 for (i = 0; i < nvar; ++i)
     for (j = 0; j < nvar; ++j)
      printf("%9.4f", P(i, j));
     printf("\n");
 printf("\nPrincipal component scores \n\n");
 for (i = 0; i < n; ++i)
   {
     printf("%21d", i+1);
for (j = 0; j < nvar; ++j)
  printf("%9.3f", V(i, j));</pre>
     printf("\n");
END:
 NAG_FREE(x);
 NAG_FREE (wt);
 NAG_FREE(s);
 NAG_FREE(isx);
 NAG_FREE(p);
 NAG_FREE(e);
NAG_FREE(v);
 return exit_status;
```

g03aac.8 Mark 24

10.2 Program Data

```
nag_mv_prin_comp (g03aac) Example Program Data
Nag_MatVarCovar Nag_ScoresEigenval Nag_FALSE 10 3
7.0 4.0 3.0
4.0 1.0 8.0
6.0 3.0 5.0
8.0 6.0 1.0
8.0 5.0 7.0
7.0 2.0 9.0
5.0 3.0 3.0
9.0 5.0 8.0
7.0 4.0 5.0
8.0 2.0 2.0
1 1 1 3
```

10.3 Program Results

nag_mv_prin_comp (g03aac) Example Program Results

```
Eigenvalues Percentage Cumulative
                                          Chisq
                                                     DF
                                                            Sig
               variation
                            variation
     8.2739
                0.6515
                            0.6515
                                       8.6127
                                                   5.0000
                                                              0.1255
                            0.9410
     3.6761
                0.2895
                                       4.1183
                                                   2.0000
                                                              0.1276
     0.7499
                0.0590
                            1.0000
                                       0.0000
                                                   0.0000
                                                              0.0000
```

Principal component loadings

```
0.1376 0.6990 0.7017
0.2505 0.6609 -0.7075
-0.9583 0.2731 -0.0842
```

Principal component scores

```
2.151
              -0.173
                        -0.107
2
              -2.887
                        -0.510
     -3.804
3
     -0.153
              -0.987
                        -0.269
4
     4.707
               1.302
                        -0.652
5
     -1.294
               2.279
                        -0.449
6
     -4.099
                        0.803
               0.144
     1.626
              -2.232
                        -0.803
8
     -2.114
               3.251
                        0.168
9
     0.235
               0.373
                        -0.275
10
      2.746
              -1.069
                         2.094
```

Mark 24 g03aac.9 (last)