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NAG Library Function Document

nag_mv_prin_comp (g03aac)

1 Purpose

nag mv_prin_comp (g03aac) performs a principal component analysis on a data matrix; both the
principal component loadings and the principal component scores are returned.

2 Specification

#include <nag.h>
#include <nagg03.h>

void nag_mv_prin_comp (Nag_PrinCompMat pcmatrix, Nag_PrinCompScores scores,
Integer n, Integer m, const double x[], Integer tdx,
const Integer isx[], double s[], const double wt[], Integer nvar,
double e[], Integer tde, double p[], Integer tdp, double vI[],
Integer tdv, NagError *fail)

3 Description

Let X be an n by p data matrix of n observations on p variables z1,z>,...,z, and let the p by p
variance-covariance matrix of x,x,,...,x, be S. A vector a; of length p is found such that:
aj Sa

is maximized subject to
alTal =1.

The variable z; = ¥ ay;x; is known as the first principal component and gives the linear combination
of the variables that gives the maximum variation. A second principal component, 2 = > b, a;, is
found such that:

a3 Sa,
is maximized subject to
agaz =1
and
agal =0.

This gives the linear combination of variables that is orthogonal to the first principal component that
gives the maximum variation. Further principal components are derived in a similar way.

The vectors ay, a,...,a,, are the eigenvectors of the matrix .S and associated with each eigenvector is
the eigenvalue, A\2. The value of A2/ > \? gives the proportion of variation explained by the ith
principal component. Alternatively, the a;’s can be considered as the right singular vectors in a singular
value decomposition with singular values \; of the data matrix centred about its mean and scaled by

1/4/(n —1), X,. This latter approach is used in nag_mv_prin_comp (g03aac), with
X, =VAP

where A is a diagonal matrix with elements \;, P’ is the p by p matrix with columns a; and V' is an n by
p matrix with V'V = I, which gives the principal component scores.

Principal component analysis is often used to reduce the dimension of a dataset, replacing a large
number of correlated variables with a smaller number of orthogonal variables that still contain most of
the information in the original dataset.
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The choice of the number of dimensions required is usually based on the amount of variation accounted
for by the leading principal components. If k& principal components are selected, then a test of the
equality of the remaining p — k eigenvalues is

(n—(2p+ 5)/6){— zp: log (A}) + (p — k)log < z[: X/ (p— k)> }

i=k+1 i=kt1
which has, asymptotically, a x? distribution with 3(p — k — 1)(p — k +2) degrees of freedom.

Equality of the remaining eigenvalues indicates that if any more principal components are to be
considered then they all should be considered.

Instead of the variance-covariance matrix the correlation matrix, the sums of squares and cross-products
matrix or a standardized sums of squares and cross-products matrix may be used. In the last case S is

replaced by o~'/255=1/2 for a diagonal matrix ¢ with positive elements. If the correlation matrix is used,
the x? approximation for the statistic given above is not valid.

The principal component scores, F, are the values of the principal component variables for the
observations. These can be standardized so that the variance of these scores for each principal
component is 1.0 or equal to the corresponding eigenvalue.

Weights can be used with the analysis, in which case the matrix X is first centred about the weighted
means then each row is scaled by an amount ,/w;, where w; is the weight for the ith observation.

4 References

Chatfield C and Collins A J (1980) Introduction to Multivariate Analysis Chapman and Hall
Cooley W C and Lohnes P R (1971) Multivariate Data Analysis Wiley

Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl. 20(3)
2-25

Kendall M G and Stuart A (1979) The Advanced Theory of Statistics (3 Volumes) (4th Edition) Griffin
Morrison D F (1967) Multivariate Statistical Methods McGraw—Hill

5  Arguments

1: pematrix — Nag PrinCompMat Input
On entry: indicates for which type of matrix the principal component analysis is to be carried out.

pematrix = Nag MatCorrelation
It is for the correlation matrix.

pematrix = Nag_MatStandardised
It is for the standardized matrix, with standardizations given by s.

pcmatrix = Nag_MatSumSq
It is for the sums of squares and cross-products matrix.

pcmatrix = Nag_MatVarCovar
It is for the variance-covariance matrix.

Constraint: pecmatrix = Nag_MatCorrelation, Nag_MatStandardised, Nag_MatSumSq or
Nag_MatVarCovar.

2: scores — Nag PrinCompScores Input
On entry: specifies the type of principal component scores to be used.

scores = Nag_ScoresStand
The principal component scores are standardized so that F'F =1, i.e., F' = X, PAT' =V,
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scores = Nag_ScoresNotStand
The principal component scores are unstandardized, i.e., F = X,P =V A

scores = Nag_ScoresUnitVar
The principal component scores are standardized so that they have unit variance.

scores = Nag_ScoresEigenval
The principal component scores are standardized so that they have variance equal to the
corresponding eigenvalue.

Constraint. scores = Nag_ScoresStand, Nag_ScoresNotStand, Nag_ScoresUnitVar or
Nag_ScoresEigenval.

3: n — Integer Input
On entry: the number of observations, n.

Constraint: n > 2.

4: m — Integer Input
On entry: the number of variables in the data matrix, m.

Constraint: m > 1.

5: x[n x tdx] — const double Input
On entry: x[(i— 1) x tdx + j — 1] must contain the ith observation for the jth variable, for
1=1,2,...,nand j=1,2,...,m.

6: tdx — Integer Input
On entry: the stride separating matrix column elements in the array x.

Constraint: tdx > m.

7: isx[m] — const Integer Input

On entry: isx[j — 1] indicates whether or not the jth variable is to be included in the analysis. If
isx[j — 1] > 0, then the variable contained in the jth column of x is included in the principal
component analysis, for j=1,2,...,m.

Constraint: isx[j — 1] > 0 for nvar values of j.

8: s[m] — double Input/Output
On entry: the standardizations to be used, if any.

If pematrix = Nag MatStandardised, then the first m elements of s must contain the
standardization coefficients, the diagonal elements of o.

Constraint: if isx[j — 1] > 0, s[j — 1] > 0.0, for j=1,2,...,m.
On exit: if pematrix = Nag MatStandardised, then s is unchanged on exit.

If pematrix = Nag_MatCorrelation, then s contains the variances of the selected variables. s[j — 1]
contains the variance of the variable in the jth column of x if isx[j — 1] > 0.

If pematrix = Nag_MatSumSq or Nag_MatVarCovar, then s is not referenced.

9: wt[n] — const double Input
On entry: optionally, the weights to be used in the principal component analysis.

If wt[i — 1] = 0.0, then the ith observation is not included in the analysis. The effective number of
observations is the sum of the weights.
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10:

11:

12:

13:

14:

15:

16:

If weights are not provided then wt must be set to NULL and the effective number of
observations is n.

Constraints:

if wt is not NULL, wt[i — 1] > 0.0, for i=1,2,...,n;

if wt is not NULL, the sum of weights > nvar + 1.
nvar — Integer Input
On entry: the number of variables in the principal component analysis, p.

Constraint: 1 < nvar < min(n — 1, m).

e[nvar x tde] — double Output

On exit: the statistics of the principal component analysis. e[(i — 1) x tde], the eigenvalues
associated with the ith principal component, A2, for i =1,2,...,p.

e[(i— 1) x tde + 1], the proportion of variation explained by the ith principal component, for
1=1,2,...,p.

e[(i— 1) x tde + 2|, the cumulative proportion of variation explained by the first i principal
components, for i =1,2,...,p.

e[(i — 1) x tde + 3], the x? statistics, for i =1,2,...,p.
e[(i — 1) x tde + 4], the degrees of freedom for the y? statistics, for i =1,2,...,p.

If pematrix # Nag_MatCorrelation, then e[(i — 1) x tde + 5] contains the significance level for
the x? statistic, for i =1,2,...,p.

If pematrix = Nag_MatCorrelation, then e[(i — 1) x tde + 5] is returned as zero.

tde — Integer Input
On entry: the stride separating matrix column elements in the array e.

Constraint: tde > 6.

p[nvar x tdp] — double Output
Note: the (7, 7)th element of the matrix P is stored in p[(i — 1) x tdp + j — 1].

On exit: the first nvar columns of p contain the principal component loadings, a;. The jth column
of p contains the nvar coefficients for the jth principal component.

tdp — Integer Input
On entry: the stride separating matrix column elements in the array p.

Constraint: tdp > nvar.

v[n X tdv] — double Output
Note: the (7, 7)th element of the matrix V' is stored in v[(i — 1) x tdv + j — 1].

On exit: the first nvar columns of v contain the principal component scores. The jth column of v
contains the n scores for the jth principal component.

If weights are supplied in the array wt, then any rows for which wt[i — 1] is zero will be set to
zero.

tdv — Integer Input
On entry: the stride separating matrix column elements in the array v.

Constraint: tdv > nvar.
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17.  fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

NE_2_INT_ARG_GE

On entry, nvar = (value) while n = (value). These arguments must satisfy nvar < n.

NE_2_INT_ARG_GT

On entry, nvar = (value) while m = (value). These arguments must satisfy nvar < m.

NE_2_INT_ARG_LT
On entry, tdp = (value) while nvar = (value). These arguments must satisfy tdp > nvar.
On entry, tdv = (value) while nvar = (value). These arguments must satisfy tdv > nvar.

On entry, tdx = (value) while m = (value). These arguments must satisfy tdx > m.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD PARAM
On entry, argument pematrix had an illegal value.

On entry, argument scores had an illegal value.

NE_INT_ARG_LT

On entry, m = (value).
Constraint: m > 1.

On entry, n = (value).
Constraint: n > 2.

On entry, nvar = (value).
Constraint: nvar > 1.

On entry, tde = (value).
Constraint: tde > 6.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_NEG_WEIGHT _ELEMENT

On entry, wt[(value)] = (value).
Constraint: when referenced, all elements of wt must be non-negative.

NE_OBSERV_LT VAR

With weighted data, the effective number of observations given by the sum of weights = (value),
while the number of variables included in the analysis, nvar = (value).
Constraint: effective number of observations > nvar + 1.

NE_SVD _NOT_CONV

The singular value decomposition has failed to converge. This is an unlikely error exit.
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NE_VAR_INCL_INDICATED

The number of variables, nvar in the analysis = (value), while the number of variables included
in the analysis via array isx = (value).
Constraint: these two numbers must be the same.

NE_VAR _INCL_STANDARD

On entry, the standardization element s[(value)] = (value), while the variable to be included
isx[(value)] = (value).
Constraint: when a variable is to be included, the standardization element must be positive.

NE_ZERO_EIGVALS

All eigenvalues/singular values are zero. This will be caused by all the variables being constant.

7  Accuracy

As nag_mv_prin_comp (g03aac) uses a singular value decomposition of the data matrix, it will be less
affected by ill-conditioned problems than traditional methods using the eigenvalue decomposition of the
variance-covariance matrix.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

A dataset is taken from Cooley and Lohnes (1971), it consists of ten observations on three variables. The
unweighted principal components based on the variance-covariance matrix are computed and
unstandardized principal component scores requested.

10.1 Program Text

/* nag_mv_prin_comp (gO03aac) Example Program.

*

* Copyright 1998 Numerical Algorithms Group.
*

* Mark 5, 1998.

* Mark 8 revised, 2004.

*

*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg03.h>

#define X(I, J) x[(I) *tdx + J]
#define P(I, J) pl(I) *tdp + J]
#define E(I, J) e[(I) *tde + J]
#define V(I, J) vI[(I) *tdv + J]
int main(void)
{
Integer exit_status = 0, i, *isx = 0, j, m, n, nvar, tde = 6, tdp,
tdv, tdx;
Nag_PrinCompMat matrix;
Nag_PrinCompScores scores;
Nag_Boolean weight;
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char nag_enum_argl[40];

double *e =0, *p =0, *s =0, *v =0, *wt = 0, *wtptr = 0;
double *x = 0;

NagError fail;

INIT_FAIL(fail);
printf("nag_mv_prin_comp (g03aac) Example Program Results\n\n");

/* Skip heading in data file */
scanf ("s*[*\nl");
scanf ("%$39s", nag_enum_arg) ;
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value

*/
matrix = (Nag_PrinCompMat) nag_enum_name_to_value(nag_enum_arg) ;
scanf ("%$39s", nag_enum_arg) ;

scores = (Nag_PrinCompScores) nag_enum_name_to_value(nag_enum_arg) ;
scanf ("%$39s", nag_enum_arg) ;
weight = (Nag_Boolean) nag_enum _name_to_value(nag_enum_arg) ;

scanf ("%14d", &n);
scanf ("%1d4", &m);

if (n >= 2 & m >= 1)
{
if (!(x = NAG_ALLOC((n)*(m), double)) ||
wt = NAG_ALLOC(n, double)) ||
s = NAG_ALLOC(m, double))
i

(N
isx = NAG_ALLOC(m, Integer)))

printf("Allocation failure\n");
exit_status = -1;
goto END;
¥
tdx = m;
}
else
{
printf("Invalid n or m.\n");
exit_status = 1;
return exit_status;
}
if (!weight)
{
for (i = 0; i < n; ++1)
{
for (j = 0; j < m; ++3)
scanf ("$1f", &X(i, 3));

}
else

{

for (i = 0; i < n; ++1)
{

0; j < m; ++3)
"g1f", &X (i, J));
1f", swt[i]);

for (3 =
scanf (
scanf ("%
¥
wtptr = wt;

for (j = 0; J < m; ++3)
scanf ("s1d", &isx[j]);

scanf ("%1d4d", &nvar);
if (nvar >= 1 && nvar <= MIN(n-1, m))

{
if (! (p = NAG_ALLOC (nvar*nvar, double)) ||
! (e = NAG_ALLOC(nvar*o6, double)) ||
! (v = NAG_ALLOC (n*nvar, double)))
{
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printf("Allocation failure\n");
exit_status = -1;
goto END;

tdp = nvar;
tde 6;
tdv = nvar;

}

else

{
printf("Invalid nvar.\n")
exit_status = 1;
goto END;

}

if (matrix == Nag_MatStandardised)
{
for (j = 0; j < m; ++3)
scanf ("$1f", &s[j])
¥

/* nag_mv_prin_comp (g0O3aac).

* Principal component analysis

*/
nag_mv_prin_comp(matrix, scores, n, m, x, tdx, isx, s, wtptr, nvar,

e, tde, p, tdp, v, tdv, &fail);

if (fail.code != NE_NOERROR)

{

printf("Error from nag_mv_prin_comp (g03aac).\n%s\n",
fail.message) ;

exit_status = 1;
goto END;
}
printf(
"Eigenvalues Percentage Cumulative Chisqg DF Sig\n")
printf (" variation variation\n\n")
for (i = 0; 1 < nvar; ++i)
{

for (j = 0; j < 6; ++3)
printf("%11.4f", E(i, Jj));
printf ("\n")

¥
printf ("\nPrincipal component loadings \n\n")
for (i = 0; i < nvar; ++1i)

{

for (j = 0; J < nvar; ++j)
printf ("$9.4f", P(i, 3));
printf ("\n")
¥
printf ("\nPrincipal component scores \n\n")
for (i = 0; 1 < n; ++1)
{
printf("%21d", i+1);
for (j = 0; j < nvar; ++3j)
printf ("$9.3f", V(i, 3));
printf ("\n")
}

END:
NAG_FREE (
NAG_FREE (
NAG_FREE (
NAG_FREE (i
NAG_FREE (
NAG_FREE (
NAG_FREE (

return exit_status;
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10.2 Program Data

nag_mv_prin_comp (g03aac) Example Program Data
Nag_MatVarCovar Nag_ScoresEigenval Nag_FALSE 10 3

0 3O U 00O
cooooo000O0O
N OOTWDND OO WD
coooooo0o00O
N U1 WWJRE Ulow
cooocooo0o0o0O

10.3 Program Results

nag_mv_prin_comp (g0O3aac) Example Program Results

Eigenvalues Percentage Cumulative Chisq DF Sig
variation variation
8.2739 0.6515 0.6515 8.6127 5.0000 0.1255
3.6761 0.2895 0.9410 4.1183 2.0000 0.1276
0.7499 0.0590 1.0000 0.0000 0.0000 0.0000

Principal component loadings
0.1376 0.6990 0.7017
0.2505 0.6609 -0.7075

-0.9583 0.2731 -0.0842

Principal component scores

g03aac

1 2.151 -0.173 -0.107
2 -3.804 -2.887 -0.510
3 -0.153 -0.987 -0.269
4 4.707 1.302 -0.652
5 -1.294 2.279 -0.449
6 -4.099 0.144 0.803
7 1.626 -2.232 -0.803
8 -2.114 3.251 0.168
9 0.235 0.373 -0.275
10 2.746 -1.069 2.094
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