202 — Correlation and Regression Analysis g02hdc

NAG Library Function Document

nag_robust m_regsn_user_fn (g02hdc)

1 Purpose

nag_robust m_regsn user fn (g02hdc) performs bounded influence regression (M -estimates) using an
iterative weighted least squares algorithm.

2 Specification

#include <nag.h>
#include <nagg02.h>

void nag_robust_m_regsn_user_fn (Nag_OrderType order,
double (*chi) (double t, Nag_Comm *comm),
double (*psi) (double t, Nag_Comm *comm),
double psip0, double beta, Nag_RegType regtype, Nag_SigmaEst sigma_est,
Integer n, Integer m, double x[], Integer pdx, double y[], double wgt[],
double thetall, Integer *k, double *sigma, double rs[], double tol,

double eps, Integer maxit, Integer nitmon, const char *outfile,
Integer *nit, Nag_Comm *comm, NagError *fail)

3 Description

For the linear regression model

y=X0-+e,

where y is a vector of length n of the dependent variable,
X is a n by m matrix of independent variables of column rank £,
0 is a vector of length m of unknown arguments,

and ¢ is a vector of length n of unknown errors with var (¢;) = o2,

nag_robust m_regsn user fn (g02hdc) calculates the M-estimates given by the solution, 6, to the
equation

Z@D(ri/(awi))wixij = 07 j: l,2,...,m, (1)
i=1

where 7; is the ith residual, i.e., the ith element of the vector r =y — Xé,
1 is a suitable weight function,

w; are suitable weights such as those that can be calculated by using output from
nag_robust m_regsn wts (g02hbc),

and o may be estimated at each iteration by the median absolute deviation of the residuals
& = med; [|ri[]/ 5

or as the solution to

Mark 24 202hdc. 1

../G02/g02hbc.pdf

g02hdc NAG Library Manual

for a suitable weight function y, where (3; and (3, are constants, chosen so that the estimator of o is
asymptotically unbiased if the errors, ¢;, have a Normal distribution. Alternatively o0 may be held at a
constant value.

The above describes the Schweppe type regression. If the w; are assumed to equal 1 for all ¢, then Huber
type regression is obtained. A third type, due to Mallows, replaces (1) by

S wlrifoyway; =0, j=1,2,...,m.
=1

This may be obtained by use of the transformations

wi — Jw;
*
Y; — Yi/ Wi

.1‘7*7 — Tijjy/ Wi, j:1,2,...,m
(see Marazzi (1987)).

The calculation of the estimates of 6 can be formulated as an iterative weighted least squares problem
with a diagonal weight matrix G given by

b(rif(ows)
Gii = (ri/(ow;)) " ' #0 |

1/)/(0), r, = 0.

The value of # at each iteration is given by the weighted least squares regression of y on X. This is
carried out by first transforming the y and X by

Ui =vivGi
;. =xiiVGi, Jj=1,2,...,m

and then using a least squares solver. If X is of full column rank then an orthogonal-triangular (QR)
decomposition is used; if not, a singular value decomposition is used.

Observations with zero or negative weights are not included in the solution.

Note: there is no explicit provision in the function for a constant term in the regression model.
However, the addition of a dummy variable whose value is 1.0 for all observations will produce a value

of 6 corresponding to the usual constant term.

nag_robust m regsn user fn (g02hdc) is based on routines in ROBETH, see Marazzi (1987).

4 References

Hampel F R, Ronchetti E M, Rousseeuw P J and Stahel W A (1986) Robust Statistics. The Approach
Based on Influence Functions Wiley

Huber P J (1981) Robust Statistics Wiley

Marazzi A (1987) Subroutines for robust and bounded influence regression in ROBETH Cah. Rech. Doc.
IUMSP, No. 3 ROB 2 Institut Universitaire de Médecine Sociale et Préventive, Lausanne

5 Arguments

1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

g02hdc.2 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf

202 — Correlation and Regression Analysis g02hdc

2:

chi — function, supplied by the user External Function

If sigma_est = Nag_SigmaChi, chi must return the value of the weight function x for a given
value of its argument. The value of x must be non-negative.

The specification of chi is:
double chi (double t, Nag_Comm *comm)
1: t — double Input

On entry: the argument for which chi must be evaluated.

2: comm — Nag Comm * Communication Structure

Pointer to structure of type Nag Comm; the following members are relevant to chi.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag robust m regsn user fn
(g02hdc) you may allocate memory and initialize these pointers with various
quantities for use by chi when called from nag_robust m_regsn user fn (g02hdc)
(see Section 3.2.1.1 in the Essential Introduction).

chi is required only if sigma_est = Nag SigmaConst, otherwise it can be specified as a pointer
with 0 value.

psi — function, supplied by the user External Function

psi must return the value of the weight function ¢ for a given value of its argument.

The specification of psi is:
double psi (double t, Nag_Comm *comm)
1: t — double Input

On entry: the argument for which psi must be evaluated.

2: comm — Nag Comm * Communication Structure

Pointer to structure of type Nag Comm; the following members are relevant to psi.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag robust m regsn user fn
(g02hdc) you may allocate memory and initialize these pointers with various
quantities for use by psi when called from nag_robust m_regsn_user fn (g02hdc)
(see Section 3.2.1.1 in the Essential Introduction).

psip0 — double Input
On entry: the value of 17(0).

beta — double Input
On entry: if sigma_est = Nag_SigmaRes, beta must specify the value of ;.

For Huber and Schweppe type regressions, (3; is the 75th percentile of the standard Normal
distribution (see nag_deviates_normal (g01fac)). For Mallows type regression (3, is the solution to

Mark 24 202hdc.3

../GENINT/essint.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf
../G01/g01fac.pdf

g02hdc NAG Library Manual

1 n
E;Q(ﬂl/\/E) =0.75,

where @ is the standard Normal cumulative distribution function (see nag cumul normal
(s15abc)).

If sigma_est = Nag_SigmaChi, beta must specify the value of (3.

B = / x(2)¢(2) dz, in the Huber case;
1 00 .

B = E;W /_ Oox(z)gb(z) dz, in the Mallows case;
1< 00 '

Br = E;wf/_oox(z/w,)dz) dz, in the Schweppe case;

where ¢ is the standard normal density, i.e.,

1
1.2
——exp(—2z°) .
Ner p(—3%)
If sigma_est = Nag_SigmaConst, beta is not referenced.

Constraint: if sigma_est # Nag_SigmaConst, beta > 0.0.

6: regtype — Nag RegType Input
On entry: determines the type of regression to be performed.

regtype = Nag_HuberReg
Huber type regression.

regtype = Nag_MallowsReg
Mallows type regression.

regtype = Nag_SchweppeReg
Schweppe type regression.

Constraint. regtype = Nag_MallowsReg, Nag_HuberReg or Nag_SchweppeReg.

7: sigma_est — Nag SigmaFEst Input
On entry: determines how o is to be estimated.

sigma_est = Nag_SigmaConst
o is held constant at its initial value.

sigma_est = Nag_SigmaRes
o is estimated by median absolute deviation of residuals.

sigma_est = Nag_SigmaChi
o is estimated using the x function.

Constraint. sigma_est = Nag_SigmaRes, Nag_SigmaConst or Nag_SigmaChi.

8: n — Integer Input
On entry: n, the number of observations.

Constraint: n > 1.

g02hdc.4 Mark 24

../S/s15abc.pdf
../S/s15abc.pdf

202 — Correlation and Regression Analysis g02hdc

10:

13:

14:

m — Integer Input
On entry: m, the number of independent variables.

Constraint: 1 <m < n.

x[dim] — double Input/Output
Note: the dimension, dim, of the array x must be at least

max(1, pdx x m) when order = Nag_ColMajor;
max(1,n x pdx) when order = Nag_RowMajor.

Where X(i,7) appears in this document, it refers to the array element

x[(j — 1) x pdx + ¢ — 1] when order = Nag_ColMajor;
x[(¢ — 1) x pdx + j — 1] when order = Nag_RowMajor.

On entry: the values of the X matrix, i.e., the independent variables. X(3, j) must contain the 4jth
element of x, for ¢+ =1,2,...,nand 7=1,2,...,m.

If regtype = Nag MallowsReg, during calculations the elements of x will be transformed as
described in Section 3. Before exit the inverse transformation will be applied. As a result there
may be slight differences between the input x and the output x.

On exit: unchanged, except as described above.

pdx — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array X.

Constraints:
if order = Nag_ColMajor, pdx > n;
if order = Nag RowMajor, pdx > m.
y[n] — double Input/Output
On entry: the data values of the dependent variable.
y[i — 1] must contain the value of y for the ith observation, for ¢ =1,2,...,n.

If regtype = Nag MallowsReg, during calculations the elements of y will be transformed as
described in Section 3. Before exit the inverse transformation will be applied. As a result there
may be slight differences between the input y and the output y.

On exit: unchanged, except as described above.

wgt[n] — double Input/Output
On entry: the weight for the ith observation, for : =1,2,... n.

If regtype = Nag MallowsReg, during calculations elements of wgt will be transformed as
described in Section 3. Before exit the inverse transformation will be applied. As a result there
may be slight differences between the input wgt and the output wgt.

If wgt[i — 1] <0, the ith observation is not included in the analysis.
If regtype = Nag HuberReg, wgt is not referenced.

On exit: unchanged, except as described above.

thetalm] — double Input/Output

On entry: starting values of the argument vector 6. These may be obtained from least squares
regression. Alternatively if sigma_est=Nag SigmaRes and sigma=1 or if
sigma_est = Nag_SigmaChi and sigma approximately equals the standard deviation of the

Mark 24 202hdc.5

g02hdc NAG Library Manual

15:

16:

17:

18:

19:

20:

21:

22:

dependent variable, y, then theta[i — 1] = 0.0, for : = 1,2,...,m may provide reasonable starting
values.

On exit: the M-estimate of 0;, for i =1,2,...,m.

k — Integer * Output

On exit: the column rank of the matrix X.

sigma — double * Input/Output

On entry: a starting value for the estimation of o. sigma should be approximately the standard
deviation of the residuals from the model evaluated at the value of 6 given by theta on entry.

Constraint. sigma > 0.0.

On exit: the final estimate of o if sigma_est # Nag_SigmaConst or the value assigned on entry if
sigma_est = Nag_SigmaConst.

rs[n] — double Output

On exit: the residuals from the model evaluated at final value of theta, i.e., rs contains the vector
(y - X é)

tol — double Input

On entry: the relative precision for the final estimates. Convergence is assumed when both the
relative change in the value of sigma and the relative change in the value of each element of theta
are less than tol.

It is advisable for tol to be greater than 100 x machine precision.

Constraint: tol > 0.0.

eps — double Input
On entry: a relative tolerance to be used to determine the rank of X.
If eps < machine precision or eps > 1.0 then machine precision will be used in place of tol.

A reasonable value for eps is 5.0 x 107® where this value is possible.

maxit — Integer Input
On entry: the maximum number of iterations that should be used during the estimation.
A value of maxit = 50 should be adequate for most uses.

Constraint: maxit > 0.

nitmon — Integer Input
On entry: determines the amount of information that is printed on each iteration.

nitmon < 0
No information is printed.

nitmon > 0
On the first and every nitmon iterations the values of sigma, theta and the change in theta
during the iteration are printed.

outfile — const char * Input

On entry: a null terminated character string giving the name of the file to which results should be
printed. If outfile = NULL or an empty string then the stdout stream is used. Note that the file
will be opened in the append mode.

g02hdc.6 Mark 24

202 — Correlation and Regression Analysis g02hdc

23:

24:

25:

6

nit — Integer * Output

On exit: the number of iterations that were used during the estimation.

comm — Nag Comm * Communication Structure

The NAG communication argument (see Section 3.2.1.1 in the Essential Introduction).

fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD PARAM

On entry, argument (value) had an illegal value.

NE_CHI

Value given by chi function < 0: chi((value)) = (value).

NE_CONVERGENCE_SOL

Iterations to solve the weighted least squares equations failed to converge.

NE_CONVERGENCE_THETA

Iterations to calculate estimates of theta failed to converge in maxit iterations: maxit = (value).

NE_FULL_RANK

Weighted least squares equations not of full rank: rank = (value).

NE_INT

On entry, maxit = (value).
Constraint: maxit > 0.

On entry, n = (value).
Constraint: n > 1.

On entry, pdx = (value).
Constraint: pdx > 0.

NE_INT 2

On entry, m = (value) and n = (value).
Constraint: 1 <m < n.

On entry, pdx = (value) and m = (value).
Constraint: pdx > m.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_NOT_CLOSE_FILE

Cannot close file (value).

Mark 24 g02hdc.7

../GENINT/essint.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf

g02hdc NAG Library Manual

NE_NOT_WRITE_FILE

Cannot open file (value) for writing.

NE_REAL

On entry, beta = (value).
Constraint: beta > 0.0.

On entry, sigma = (value).
Constraint: sigma > 0.0.

On entry, tol = (value).
Constraint: tol > 0.0.
NE_ZERO DF
On entry, n = (value) and k = (value).
Constraint: n — k > 0.
NE_ZERO_VALUE

Estimated value of sigma is zero.

7 Accuracy

The accuracy of the results is controlled by tol.

8 Parallelism and Performance

nag_robust m regsn user fn (g02hdc) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.

nag_robust m_regsn user fn (g02hdc) makes calls to BLAS and/or LAPACK routines, which may be
threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the Users’ Note for your implementation for any additional implementation-specific
information.

9 Further Comments

In cases when sigma_est # Nag_SigmaConst it is important for the value of sigma to be of a reasonable
magnitude. Too small a value may cause too many of the winsorized residuals, i.e., ¥(r;/0), to be zero,
which will lead to convergence problems and may trigger the fail.code = NE FULL RANK error.

By suitable choice of the functions chi and psi this function may be used for other applications of
iterative weighted least squares.

For the variance-covariance matrix of # see nag robust m_regsn param_var (g02hfc).

10 Example
Having input X, Y and the weights, a Schweppe type regression is performed using Huber’s v function.

The function BETCAL calculates the appropriate value of .

10.1 Program Text

/* nag_robust_m_regsn_user_fn (gO02hdc) Example Program.
Copyright 2002 Numerical Algorithms Group.

Mark 7, 2002.
Mark 7b revised, 2004.

* % Ok F

g02hdc.8 Mark 24

../G02/g02hfc.pdf

202 — Correlation and Regression Analysis

*/

#include
#include
#include
#include
#include
#include
#include
#include

<stdio.

<nag.h>
<nag_stdlib.h>
<nagg02.h>
<nags.h>
<nagx01l.h>
<nagx02.h>

<math.h>

h>

#ifdef _ cplusplus

extern
#endif
static
static
static

nen {

#ifdef __cplusplus

3
#endif

int main(void)

{

/* Scalars */
double
Integer
Integer
NagError
Nag_OrderType
Nag_Comm

/* Arrays */
static double
double

beta, eps, psipO, sigma, tol;
exit_status, i, j, k, m, maxit,
pdx;

fail;

order;

comm;

ruser[2] = {-1.0, -1.0};

*rs = 0, *theta = 0, *wgt = 0,

#ifdef NAG_COLUMN_MAJOR

#define X(I, J)

x[(J-1)*pdx + I 1]

order = Nag_ColMajor;

#else
#define X (I, J)

x[(I-1)*pdx + J

1]

order = Nag_RowMajor;

#endif

INIT FAIL(fail);

exit_status =
printf (

"nag_robust_m_regsn_user_£fn

/* For communication with user-supplied functions:
ruser;

comm.user =

0;

(g02hdc)

/* Skip heading in data file */

scanf ("s*["\n]

")

/* Read in the dimensions of X */

scanf ("%1d%1d%

[\n] ", &n, &m);

/* Allocate memory */

if (!(rs = NAG_ALLOC(n,

! (theta =
! (wgt
¢
L(

X
y

= NAG_ALLOC (n,
= NAG_ALLOC(n * m,
NAG_ALLOC (n,

double)) |
NAG_ALLOC (m, double)
double))
double)
double)))

|
)
|l
)

printf("Allocation failure\n");
exit_status = -1;

goto END;
3

#ifdef NAG_COLUMN_MAJOR

Mark 24

double NAG_CALL chi(double t, Nag_Comm *comm
double NAG_CALL psi(double t, Nag_Comm *comm
void NAG_CALL betcal(Integer n, double wgt[], double *beta);

n,

)i
) .

7

nit,

*/

nitmon;

g02hdc

Example Program Results\n");

202hdc.9

g02hdc

pdx = n;
#else

pdx = m;
#endif

/* Read in the X matrix, the Y values and

/* constant term */
for (i = 1; i <= n; ++1)
{
for (j = 2; j <= m; ++j)
scanf ("s1f", &xX(i, 3));
scanf ("s1fs*[*\n] ", &yl[i - 11);
X(i, 1) = 1.0;
}
/* Read in weights */
for (i = 1; 1 <= n; ++1)
{

scanf ("%$1f", &wgt[i - 11);
scanf ("s*[*\n] ");
}

betcal(n, wgt, &beta);
/* Set other parameter values */
maxit = 50;
tol 5e-5;
eps = 5e-06;
psip0 1.0;

NAG Library Manual

set X(i,1) to 1 for the */

/* Set value of isigma and initial value of sigma */

sigma 1.0;

/* Set initial value of theta */
for (j = 1; j <= m; ++3)
thetalj 1] 0.0;

/* Change nitmon to a positive value if monitoring information

* is required

*/
nitmon = 0;
/* Schweppe type regression */

nag_robust_m_regsn_user_fn
Robust regression,
functions and weights

/* (g02hdc) .
*

*
*/
nag_robust_m_regsn_user_fn(order,
Nag_SigmacChi,
&sigma, rs,

nitmon, O,

printf ("\n");

if (fail.code != NE_NOERROR && fail.code
{
printf("Error from nag_robust_m_regsn_user_fn
fail.message);
exit_status = 1;
goto END;
}
else
{
if (fail.code == NE_FULL_RANK)
{
printf(

"nag_robust_m regsn_user_fn

"%S\n" ,
printf ("\n");

fail.message);

chi, psi,
n,
tol,
&nit,

compute regression with user-supplied

psip0, beta, Nag_SchweppeReg,
m, x, pdx, y, wgt, theta, &k,
eps, maxit,

&comm, &fail);

= NE_FULL_RANK)

(g02hdc) .\n%s\n",

(g02hdc) returned with message

printf("Some of the following results may be unreliable\n");

b

printf ("nag_robust_m_regsn_user_fn

(g02hdc)

required %41d

"iterations to converge\n", nit);

g02hdc. 10

Mark 24

202 — Correlation and Regression Analysis

printf (" k = %41d\n", k);
printf (" Sigma = %9.4f\n", sigma);
printf (" Theta\n")

for (j = 1; j <= m; ++j)
printf ("%9.4f\n", thetalj - 11);
printf ("\n")

printf (" Weights Residuals\n")
for (i = 1; i <= n; ++1i)
printf("%9.4£%9.4f\n", wgt[i - 1], rs[i - 11);
}

END:
NAG_FREE (rs) ;
NAG_FREE (theta) ;
NAG_FREE (wgt) ;
NAG_FREE (x) ;
NAG_FREE (y) ;

return exit_status;

}
double NAG_CALL psi(double t, Nag_Comm *comm)
{
double ret_val;
if (comm->user[0] == -1.0)
{
printf (" (User-supplied callback psi, first invocation.)\n")
comm->user [0] = 0.0;
}
if (t <= -1.5)
ret_val = -1.5;
else if (fabs(t) < 1.5)
ret_val = t;
else
ret_val = 1.5;
return ret_val;
}

static double NAG_CALL chi(double t, Nag_Comm *comm)
{

/* Scalars */

double ret_val;

double ps;
if (comm->user[1l] == -1.0)
{
printf (" (User-supplied callback chi, first invocation.)\n")
comm->user[1] = 0.0;
}
ps = 1.5;
if (fabs(t) < 1.5)
ps = t;

ret_val = ps * ps / 2.0;
return ret_val;

}

g02hdc

i

static void NAG_CALL betcal(Integer n, double wgt[], double *beta)

{
/* Scalars */
double amaxex, anormc, b, d2, dc, dw, dw2, pc, w2;
Integer 1i;

/* Calculate BETA for Schweppe type regression */

/* Function Body */
/* nag_real_smallest_number (x02akc).
* The smallest positive model number
*
/
amaxex = -log(nag_real_smallest_number) ;
/* nag_pi (x0laac).
* pi

*/

Mark 24

g02hdc. 11

g02hdc NAG Library Manual

anormc = sqgrt(nag_pi * 2.0);
dz2 = 2.25;
*beta = 0.0;
for (i = 1; i <= n; ++1)
{

w2 = wgt[i-1] * wgt[i-1];
dw = wgt[i-1] * 1.5;
/* nag_cumul_normal (sl5abc).
* Cumulative Normal distribution function P(x)

*/
pc = nag_cumul_normal (dw) ;
dw2 = dw * dw;
dc 0.0;

if (dw2 < amaxex)
dc = exp(-dw2 / 2.0) / anormc;
b = (-dw * dc + pc - 0.5) / w2 + (1.0 - pc) * d2;
*beta = b * w2 / (double) (n) + *beta;
}
return;

}

10.2 Program Data

nag_robust_m_regsn_user_fn (g02hdc) Example Program Data

5 3 : N M
-1.0 -1.0 10.5 X2 X3 Y
-1.0 1.0 11.3

1.0 -1.0 12.0

1.0 1.0 13.4

0.0 3.0 17.1 End of X1 X2 and Y values
0.4039 : WGT

0.5012

0.4039

0.5012

0.3862 : End of the weights

10.3 Program Results

nag_robust_m_regsn_user_fn (g02hdc) Example Program Results
(User-supplied callback chi, first invocation.)
(User-supplied callback psi, first invocation.)

nag_robust_m_regsn_user_fn (g02hdc) required 5 iterations to converge
k = 3
Sigma = 2.7783
Theta
12.2321
1.0500
1.2464

Weights Residuals
.4039 0.5643
.5012 -1.1286
.4039 0.5643
.5012 -1.1286
.3862 1.1286

[eNoNoNoNe)

g02hdc.12 (last) Mark 24

	g02hdc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Hampel et al. (1986)
	Huber (1981)
	Marazzi (1987)

	5 Arguments
	order
	chi
	t
	comm
	user
	iuser
	p

	psi
	t
	comm
	user
	iuser
	p

	psip0
	beta
	regtype
	sigma_est
	n
	m
	x
	pdx
	y
	wgt
	theta
	k
	sigma
	rs
	tol
	eps
	maxit
	nitmon
	outfile
	nit
	comm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_CHI
	NE_CONVERGENCE_SOL
	NE_CONVERGENCE_THETA
	NE_FULL_RANK
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_NOT_CLOSE_FILE
	NE_NOT_WRITE_FILE
	NE_REAL
	NE_ZERO_DF
	NE_ZERO_VALUE

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

