202 — Correlation and Regression Analysis g02dac

NAG Library Function Document

nag_regsn_mult linear (g02dac)

1 Purpose

nag_regsn mult linear (g02dac) performs a general multiple linear regression when the independent
variables may be linearly dependent. Parameter estimates, standard errors, residuals and influence
statistics are computed. nag_regsn _mult_linear (g02dac) may be used to perform a weighted regression.

2 Specification

#include <nag.h>
#include <nagg02.h>

void nag_regsn_mult_linear (Nag_IncludeMean mean, Integer n,
const double x[], Integer tdx, Integer m, const Integer sx[],
Integer ip, const double y[], const double wt[], double *rss,
double *df, double b[], double se[], double cov[], double resl[],
double h[], double g[], Integer tdgq, Nag_Boolean *svd, Integer *rank,
double p[], double tol, double com_ar[], NagError *fail)

3 Description
The general linear regression model is defined by
y=Xp+e
where
y is a vector of n observations on the dependent variable,
X is an n by p matrix of the independent variables of column rank £,
0 is a vector of length p of unknown arguments, and

€ is a vector of length n of unknown random errors such that vare = Vo2, where V is a known
diagonal matrix.

Note: the p independent variables may be selected from a set of m potential independent variables.
If V = I, the identity matrix, then least squares estimation is used.

If V # I, then for a given weight matrix W oc V!, weighted least squares estimation is used.

The least squares estimates (3 of the arguments 3 minimize (y — X3)" (y — X3) while the weighted least
squares estimates minimize (y — X3)'W(y — X3).

nag_regsn_mult_linear (g02dac) finds a QR decomposition of X (or W'/2X in the weighted case), i.e.,
X = QR <0r w2x — QR*)

R

where R* = < 0

) and R is a p by p upper triangular matrix and () is an n by n orthogonal matrix.

If R is of full rank, then ﬁ is the solution to
RB=c¢

where ¢ = QTy (or Q"W '/?y) and ¢, is the first p elements of c.

Mark 24 g02dac.1

g02dac NAG Library Manual

If R is not of full rank a solution is obtained by means of a singular value decomposition (SVD) of R,

R:Q*<lo) 8>PT

where D is a k by k diagonal matrix with nonzero diagonal elements, k being the rank of R and @, and
P are p by p orthogonal matrices. This gives the solution

B = P].D_1 }:1 C1
Py being the first k£ columns of P, i.e., P = (P P) and Q,, being the first k£ columns of Q..

Details of the SVD are made available, in the form of the matrix P*:

. D-IPT)
P =).
("x
This will be only one of the possible solutions. Other estimates may be obtained by applying constraints
to the arguments. These solutions can be obtained by using nag_regsn_mult linear tran_model (g02dkc)

after using nag regsn_mult linear (g02dac). Only certain linear combinations of the arguments will have
unique estimates; these are known as estimable functions.

The fit of the model can be examined by considering the residuals, r; = y; — 4, where § = X 3 are the
fitted values. The fitted values can be written as Hy for an n by n matrix H. The ¢th diagonal element of
H, h;, gives a measure of the influence of the ith value of the independent variables on the fitted
regression model. The values h; are sometimes known as leverages. Both r; and h; are provided by
nag_regsn_mult linear (g02dac).

The output of nag regsn mult linear (g02dac) also includes [, the residual sum of squares and
associated degrees of freedom, (n — k), the standard errors of the parameter estimates and the variance-
covariance matrix of the parameter estimates.

In many linear regression models the first term is taken as a mean term or an intercept, i.e., X;; = 1, for
1=1,2,...,n. This is provided as an option. Also note that not all the potential independent variables
need to be included in a model; a facility to select variables to be included in the model is provided.

Details of the QR decomposition and, if used, the SVD, are made available. These allow the regression
to be updated by adding or deleting an observation using nag_regsn mult linear addrem_obs (g02dcc),
adding or deleting a variable using nag regsn mult linear_add var (g02dec) and
nag_regsn_mult linear delete var (g02dfc) or estimating and testing an estimable function using
nag_regsn_mult_linear est func (g02dnc).

4 References

Cook R D and Weisberg S (1982) Residuals and Influence in Regression Chapman and Hall
Draper N R and Smith H (1985) Applied Regression Analysis (2nd Edition) Wiley

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl. 20(3)
2-25

McCullagh P and Nelder J A (1983) Generalized Linear Models Chapman and Hall
Searle S R (1971) Linear Models Wiley

g02dac.2 Mark 24

../G02/g02dkc.pdf
../G02/g02dcc.pdf
../G02/g02dec.pdf
../G02/g02dfc.pdf
../G02/g02dnc.pdf

202 — Correlation and Regression Analysis g02dac

S Arguments

1: mean — Nag_IncludeMean Input
On entry: indicates if a mean term is to be included.

mean = Nag_MeanlInclude
A mean term, (intercept), will be included in the model.

mean = Nag_MeanZero
The model will pass through the origin, zero point.

Constraint: mean = Nag_MeanInclude or Nag_MeanZero.

2: n — Integer Input
On entry: the number of observations, n.

Constraint: n > 2.

3: x[n x tdx] — const double Input
On entry: x[(i) X tdx + j] must contain the ith observation for the jth potential independent
variable, for i=0,1,...,n—1and j=0,1,...,m — 1.

4: tdx — Integer Input
On entry: the stride separating matrix column elements in the array x.

Constraint: tdx > m.

5: m — Integer Input
On entry: the total number of independent variables in the dataset, m.

Constraint: m > 1.

6: sx[m| — const Integer Input

On entry: indicates which of the potential independent variables are to be included in the model. If
sx[j] > 0, then the variable contained in the corresponding column of x is included in the
regression model.

Constraints:

sx[j] >0, for j=0,1,...,m—1;
if mean = Nag_Meanlnclude, then exactly ip — 1 values of sx must be > 0;
if mean = Nag_MeanZero, then exactly ip values of sx must be > 0.

7: ip — Integer Input
On entry: the number p of independent variables in the model, including the mean or intercept if
present.

Constraints:

if mean = Nag_Meanlnclude, 1 <ip < m+ I;
if mean = Nag MeanZero, | <ip < m.

8: y[n] — const double Input

On entry: observations on the dependent variable, y.

9: wt[n] — const double Input

On entry: optionally, the weights to be used in the weighted regression.

Mark 24 g02dac.3

g02dac NAG Library Manual

13:

14:

15:

16:

17:

18:

If wt[i —1] = 0.0, then the ith observation is not included in the model, in which case the
effective number of observations is the number of observations with nonzero weights. The values
of res and h will be set to zero for observations with zero weights.

If weights are not provided then wt must be set to NULL and the effective number of
observations is n.

Constraint: if wt is not NULL, wt[i — 1] = 0.0, for i=1,2,...,n.

rss — double * Output

On exit: the residual sum of squares for the regression.

df — double * Output

On exit: the degrees of freedom associated with the residual sum of squares.

b[ip] — double Output

On exit: bli], for i =0,1,...,ip — 1, contain the least squares estimates of the arguments of the
regression model, .
If mean = Nag_MeanInclude, then b[0] will contain the estimate of the mean argument and b|[i]

will contain the coefficient of the variable contained in column j of x, where sx[j] is the ith
positive value in the array sx.

If mean = Nag_MeanZero, then b[i — 1] will contain the coefficient of the variable contained in
column j of x, where sx[j] is the ith positive value in the array sx.

se[ip] — double Output
On exit: se[i], for i =10,1,...,ip — 1, contains the standard errors of the ip parameter estimates
given in b.

cov[ip x (ip +1)/2] — double Output

On exit: the first ip x (ip + 1)/2 elements of cov contain the upper triangular part of the variance-
covariance matrix of the ip parameter estimates given in b. They are stored packed by column,
i.e., the covariance between the parameter estimate given in b[i| and the parameter estimate given
in b[j], j >4, is stored in cov[j(j+1)/2+14], for i=0,1,...,ip—1 and j=14,...,ip— L.

res[n] — double Output

On exit: the (weighted) residuals, r;.

h[n] — double Output

On exit. the diagonal elements of H, h;, the leverages.

q[n x tdq] — double Output
Note: the (7, j)th element of the matrix) is stored in q[(i — 1) x tdq + j — 1].

On exit: the results of the QR decomposition: the first column of q contains ¢, the upper triangular
part of columns 2 to ip + 1 contain the R matrix, the strictly lower triangular part of columns 2 to
ip + 1 contain details of the) matrix.

tdq — Integer Input
On entry: the stride separating matrix column elements in the array q.

Constraint: tdq > ip + 1.

g02dac.4 Mark 24

202 — Correlation and Regression Analysis g02dac

19:

20:

21:

22:

23:

24:

6

svd — Nag Boolean * Output
On exit: if a singular value decomposition has been performed then svd will be Nag TRUE,
otherwise svd will be Nag FALSE.

rank — Integer * Output
On exit: the rank of the independent variables.

If svd = Nag_FALSE, rank = ip.

If svd = Nag TRUE, rank is an estimate of the rank of the independent variables. rank is
calculated as the number of singular values greater than tol (largest singular value). It is possible
for the SVD to be carried out but rank to be returned as ip.

p[2 x ip + ip X ip] — double Output
On exit: details of the QR decomposition and SVD if used.

If svd = Nag FALSE, only the first ip elements of p are used, these will contain details of the
Householder vector in the QR decomposition (see Sections 2.2.1 and 3.3.6 in the f08 Chapter
Introduction).

If svd = Nag_TRUE, the first ip elements of p will contain details of the Householder vector in
the QR decomposition and the next ip elements of p contain singular values. The following ip by
ip elements contain the matrix P* stored by rows.

tol — double Input

On entry: the value of tol is used to decide what is the rank of the independent variables. The
smaller the value of tol the stricter the criterion for selecting the singular value decomposition. If
tol = 0.0, then the singular value decomposition will never be used, this may cause run time
errors or inaccurate results if the independent variables are not of full rank.

Suggested value: tol = 0.000001.
Constraint: tol > 0.0.

com_ar[dim] — double Output
Note: the dimension, dim, of the array com_ar must be at least 5 x (ip — 1) x ip x ip.

On exit: if svd =Nag TRUE, com_ar contains information which is needed by
nag_regsn mult linear newyvar (g02dgc).

fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Error Indicators and Warnings

NE_2 INT_ARG_LT

On entry, n = (value) while ip = (value). These arguments must satisfy n > ip.
On entry, tdq = (value) while ip + 1 = (value). These arguments must satisfy tdq > ip + 1.

On entry, tdx = (value) while m = (value). These arguments must satisfy tdx > m.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument mean had an illegal value.

Mark 24 g02dac.5

../F08/f08intro.pdf
../F08/f08intro.pdf
../F08/f08intro.pdf
../G02/g02dgc.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf

g02dac NAG Library Manual

NE_BAD_SX_OR_IP

Either a value of sx is < 0, or ip is incompatible with mean and sx, or ip > the effective number
of observations.

NE_INT_ARG_LT

On entry, ip = (value).
Constraint: ip > 1.

On entry, m = (value).
Constraint: m > 1.

On entry, n = (value).
Constraint: n > 2.

On entry, sx[(value)] must not be less than 0: sx[(value)] = (value).

NE_REAL_ ARG _LT
On entry, tol must not be less than 0.0: tol = (value).

On entry, wt[(value)] must not be less than 0.0: wt[(value)] = (value).

NE_SVD _NOT_CONV

The singular value decomposition has failed to converge.

NE_ZERO_DOF_RESID

The degrees of freedom for the residuals are zero, i.e., the designated number of arguments = the
effective number of observations. In this case the parameter estimates will be returned along with
the diagonal elements of H, but neither standard errors nor the variance-covariance matrix will be
calculated.

7 Accuracy

The accuracy of this function is closely related to the accuracy of the QR decomposition.

8 Parallelism and Performance

Not applicable.

9 Further Comments

Function nag regsn_std resid influence (g02fac) can be used to compute standardized residuals and
further measures of influence. nag_regsn mult linear (g02dac) requires, in particular, the results stored
in res and h.

10 Example

For this function two examples are presented. There is a single example program for
nag regsn mult linear (g02dac), with a main program and the code to solve the two example problems
is given in the functions exl and ex2.

Example 1 (ex1)

Data from an experiment with four treatments and three observations per treatment are read in. The
treatments are represented by dummy (0 — 1) variables. An unweighted model is fitted with a mean
included in the model.

g02dac.6 Mark 24

../G02/g02fac.pdf

202 — Correlation and Regression Analysis g02dac

Example 2 (ex2)
This example program uses nag regsn_mult linear (g02dac) to find the coefficient of the n degree
polynomial
p(z) = ax™ + ap 12" N+ ax + a,
that fits the data, p(z(i)) to y(¢), in a least squares sense.

In this example nag regsn mult linear (g02dac) is called with both mean = Nag Meanlnclude and
mean = Nag_MeanZero. The polynomial degree, the number of data points and the tolerance can be
modified using the example data file.

10.1 Program Text

/* nag_regsn_mult_linear (g02dac) Example Program.
Copyright 1998 Numerical Algorithms Group.

Mark 5 revised, 1998.
Mark 6 revised, 2000.
Mark 8 revised, 2004.

#include <nag.h>
#include <math.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg02.h>

static int ex1l(void);
static int ex2(void);

int main(void)

{
Integer exit_status_exl = 0;
Integer exit_status_ex2 = 0;
printf("nag_regsn_mult_linear (g02dac) Example Program Results\n\n");
/* Skip heading in data file */
scanf ("s*["\n] ");
exit_status_exl = ex1();
exit_status_ex2 = ex2();
return (exit_status_exl == 0 && exit_status_ex2 == 0) ?2 0 : 1;
}

#define X(I, J) x[(I) *tdx + J]
#define Q(I, J) ql(I) *tdg + J]

static int exl(void)

{
Integer exit_status = 0, i, ip, j, m, n, rank, *sx = 0, tdq, tdx;
char nag_enum_argl[40];
double *p = 0, *com_ar = 0, *cov =0, df, *h = 0, *p = 0, *q = 0;
double *res = 0, rss, *se = 0, tol, *wt = 0, *wtptr, *x = 0, *y = 0;
Nag_Boolean svd, weight;
Nag_IncludeMean mean;
NagError fail;

INIT_FAIL(fail);

printf ("Example 1\n");

/* Skip heading in data file */
scanf ("s*["\nl");

scanf ("%1d %1d4", &n, &m);

scanf (" %39s", nag_enum_arg);

/* nag_enum_name_to_value (x04nac).

Mark 24 g02dac.7

g02dac NAG Library Manual

* Converts NAG enum member name to value

*/
weight = (Nag_Boolean) nag_enum_name_to_value(nag_enum_arg) ;
scanf (" %39s", nag_enum_arg);
mean = (Nag_IncludeMean) nag_enum_name_to_value(nag_enum_arg) ;
if (n >= 2 & m >= 1)

h = NAG_ALLOC(n, double)) ||
res = NAG_ALLOC(n, double)) ||
wt = NAG_ALLOC(n, double)) ||
x = NAG_ALLOC(n*m, double)) ||
y = NAG_ALLOC(n, double)) ||
sx = NAG_ALLOC(m, Integer)))

printf("Allocation failure\n");
exit_status = -1;
goto END;

tdx = m;
}
else
{
printf("Invalid n or m.\n");
exit_status = 1;
return exit_status;
}
if (weight)
{
wtptr = wt;
for (1 = 0; 1 < n; i++)
{
for (j = 0; J < m; j++)
scanf ("%1f", &X(i, J));
scanf ("$1f%1f", &yl[il, s&wtl[il);
¥
}
else
{
wtptr = (double *) O0;
for (1 = 0; 1 < n; i++)
{

1£7, &x(i, 3));
}

}

for (j = 0; j < m; J++)
scanf ("%14d", &sx[j]);

/* Calculate ip */

ip = 0;

if (mean == Nag_MeanInclude)
ip += 1;

for (i = 0; i < m; i++)
if (sx[i] > 0) ip += 1;

b = NAG_ALLOC(ip, double)) ||

cov = NAG_ALLOC((ip*ip+ip)/2, double)) ||

p = NAG_ALLOC(ip*(ip+2), double)) ||

g = NAG_ALLOC(n*(ip+1), double)) ||

com_ar = NAG_ALLOC(ip*ip+5*(ip-1), double)) ||
se = NAG_ALLOC(ip, double)))

printf("Allocation failure\n");
exit_status = -1;
goto END;

tdg = ip+1;

/* Set tolerance */

tol = 0.00001e0;
/* nag_regsn_mult_linear (g02dac).

g02dac.8 Mark 24

202 — Correlation and Regression Analysis

* Fits a general (multiple) linear regression model

*/

nag_regsn_mult_linear (mean, n, x, tdx, m, sx, ip, vy,

if (fail.

{

wtptr, &rss, &df, b, se, cov, res, h, q,
tdq, &svd, &rank, p, tol, com_ar, &fail);
code != NE_NOERROR)

printf ("Error from nag_regsn_mult_linear (g02dac).\n%s\n",

fail.message) ;

exit_status = 1;
goto END;
3
if (svd)
printf ("Model not of full rank, rank = %41d\n\n", rank);
printf ("Residual sum of squares = %13.4e\n", rss);
printf ("Degrees of freedom = %3.1f\n\n", d4f);
printf("Variable Parameter estimate Standard error\n\n");

for (j = 0; j < ip; Jj++)

printf("%$61d%20.4e%20.4e\n", j+1, bljl, seljl);
printf ("\n")
printf (" Obs Residuals h\n\n")

for (i = 0; 1 < n; i++)

printf

END:
NAG_FREE
NAG_FREE
NAG_FREE
NAG_FREE
NAG_FREE
NAG_FREE
NAG_FREE
NAG_FREE
NAG_FREE
NAG_FREE
NAG_FREE
NAG_FREE

("%$61d%20.4e%20.4e\n", i+1, res[il, hlil);

return exit_status;

b
#undef x
#undef g

#define X(

#define Q(I

static int

I, J) x[(I) *tdx + J]
J) ql(I) *tdg + J]
ex2(void)

{
Integer exit_status = 0;
double rss, tol;
Integer i, ip, rank, j, m, mmax, n, degree, digits, tdx, tdqg;
double af;
Nag_Boolean svd;
Nag_IncludeMean mean;
double *h = 0, *res =0, *wt =0, *x =0, *y = 0;
double *» = 0, *cov =0, *p =0, *q = 0, *com_ar = 0, *se = 0;
double *wtptr = (double *) 0; /* don’t use weights */
Integer *sx = 0;
NagError fail;

INIT_FAIL(fail);

printf(

"\n\n\nExample 2\n")

/* Skip heading in data file */

scanf ("

$*[*\n]")

/* Use mean = Nag_MeanInclude */

mean = Nag_MeanInclude;

scanf ("%

Mark 24

1d%1d%1d", s°ree, &n, &digits);

g02dac

g02dac.9

g02dac NAG Library Manual

mmax = degree+l;
if (n >= 1)

h = NAG_ALLOC(n, double)) ||
res = NAG_ALLOC(n, double)) ||
wt = NAG_ALLOC(n, double)) ||
X NAG_ALLOC (n*mmax, double)) ||
y NAG_ALLOC(n, double)) ||
s

x = NAG_ALLOC (mmax, Integer)))

printf("Allocation failure\n");
exit_status = -1;
goto END;

tdx = mmax;
}
else
{
printf("Invalid n.\n");
exit_status = 1;
return exit_status;

}

/* Set tolerance */

tol = pow(10.0, -(double) digits);
m = degree;

ip = degree + 1;

if (!(b = NAG_ALLOC(ip, double)) ||
! (cov = NAG_ALLOC((ip*ip+ip)/2, double)) ||
! (p = NAG_ALLOC (ip*(ip+2), double)) ||
! (g = NAG_ALLOC(n* (ip+1), double)) ||
! (com_ar = NAG_ALLOC (ip*ip+5*(ip-1), double)) ||
! (se = NAG_ALLOC(ip, double)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
tdg = ip+1;
for (i = 0; i < ip-1; ++1i)
sx[i] = 1;

for (i = 0; 1 < n; i++)

{
scanf ("$1f%1f", &X(i, degree-1), &ylil);
for (j = 0; j < degree; ++3j)
X(i, j) = pow(X(i, degree-1), (double) (degree-j));
}

/* nag_regsn_mult_linear (g02dac), see above. */
nag_regsn_mult_linear (mean, n, x, tdx, m, sx, ip, vy,
wtptr, &rss, &df, b, se, cov, res, h, q,
tdq, &svd, &rank, p, tol, com_ar, &fail);
if (fail.code != NE_NOERROR)
{
printf ("Error from nag_regsn_mult_linear (g02dac).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
}

printf ("Regression estimates (mean = Nag_MeanInclude) \n\n");
printf("Coefficient Estimate Standard error\n\n") ;
for (3 = 1; j < ip; j++)

printf("a(%1d)%20.4e%20.4e\n", degree+l-j, b[j], sel]j]);
printf("a(0)%20.4e%20.4e\n", b[0], sel0]);
printf ("\n\n") ;

/* Use mean = Nag_MeanZero */

g02dac.10 Mark 24

g

1

n
E

E
3

1
1
2
2

OO0ORrRPRORPROOOOOOR

02 — Correlation and Regression Analysis

mean = Nag_MeanZero;

m = degree + 1;
for (i = 0; i < ip; ++1i)
sx[1] = 1;

/* nag_regsn_mult_linear (g02dac), see above. */
nag_regsn_mult_linear (mean, n, x, tdx, m, sx, ip, vy,
wtptr, &rss, &df, b, se, cov, res, h, q,

tdq, &svd, &rank, p, tol, com_ar, &fail);

if (fail.code != NE_NOERROR)
{
printf ("Error from nag_regsn_mult_linear (g02dac).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
¥

printf ("Regression estimates (mean = Nag_MeanZero) \n\n")
printf("Coefficient Estimate Standard error\n\n");
for (j = 0; j < ip; J++)

printf("a(%1d)%20.4e%20.4e\n", degree-j, b[jl, seljl);
printf ("\n\n")

END:
NAG_FREE (
NAG_FREE (
NAG_FREE (
NAG_FREE (
NAG_FREE (
NAG_FREE (
NAG_FREE (
NAG_FREE (
NAG_FREE (
NAG_FREE (
NAG_FREE (
NAG_FREE (

return exit_status;

0.2 Program Data

ag_regsn_mult_linear (g02dac) Example Program Data

xample 1

12 4 Nag_FALSE Nag_MeanInclude
.0 0.0 0.0 0.0 33.63
0 0.0 0.0 1.0 39.62
0 1.0 0.0 0.0 38.18
0 0.0 1.0 0.0 41.4¢6
0 0.0 0.0 1.0 38.02
0 1.0 0.0 0.0 35.83
0 0.0 0.0 1.0 35.99
0 0.0 0.0 0.0 36.58
0 0.0 1.0 0.0 42.92
0 0.0 0.0 0.0 37.80
0 0.0 1.0 0.0 40.43
.0 1.0 0.0 0.0 37.89
1 1 1 1

xample 2

11 15

31.80 -1.23

50.20 -1.08

20.00 -0.83

88.84 -0.53
50.20 -0.28
70.66 -0.15

Mark 24

g02dac

g02dac.11

g02dac

360.20
392.97
444 .54
530.50
550.02

PP OOO

.26
.53
.93
.08
.35

10.3 Program Results

nag_regsn_mult_linear

Example 1

Model not of full rank,

Residual sum of squares
Degrees of freedom = 8.0

Variable

U b whpR

Obs

W OO0 UL WwN PR

Example 2

Regression estimates

Coefficient

3
2
1
0

U OR VRN

(
(
(
(

Regression estimates

Coefficient

(
(
(
(

3
2
1
0

VRN OB VRN

Parameter estimate

NP OO0 0w

Residuals

-2.3733e+00
1.7433e+00
8.8000e-01

-1.4333e-01
1.4333e-01

-1.4700e+00

-1.8867e+00
5.7667e-01
1.3167e+00
1.7967e+00

-1.1733e+00
5.9000e-01

Estimate

-8.8628e-09
9.0059%e-06
2.3641e-03

-1.2614e+00

Estimate

-8.8628e-09
9.0059%e-06
2.3641e-03

-1.2614e+00

(gb2dac)

.0557e+01
.4467e+00
.7433e+00
.1047e+01
.3200e+00

(mean

Example Program Results

4

2.2227e+01

Standard error

00 00 00 00 W

h

WWWwWwWwwwwwwww

Nag_MeanInclude)

Standard error

7.9470e-09
7.0244e-06
1.7199e-03
1.0568e-01

(mean = Nag_MeanZero)

Standard error

7.9470e-09
7.0244e-06
1.7199e-03
1.0568e-01

.8494e-01
.3896e-01
.3896e-01
.3896e-01
.3896e-01

.3333e-01
.3333e-01
.3333e-01
.3333e-01
.3333e-01
.3333e-01
.3333e-01
.3333e-01
.3333e-01
.3333e-01
.3333e-01
.3333e-01

NAG Library Manual

g02dac.12 (last)

Mark 24

	g02dac
	1 Purpose
	2 Specification
	3 Description
	4 References
	Cook and Weisberg (1982)
	Draper and Smith (1985)
	Golub and Van Loan (1996)
	Hammarling (1985)
	McCullagh and Nelder (1983)
	Searle (1971)

	5 Arguments
	mean
	n
	x
	tdx
	m
	sx
	ip
	y
	wt
	rss
	df
	b
	se
	cov
	res
	h
	q
	tdq
	svd
	rank
	p
	tol
	com_ar
	fail

	6 Error Indicators and Warnings
	NE_2_INT_ARG_LT
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_BAD_SX_OR_IP
	NE_INT_ARG_LT
	NE_REAL_ARG_LT
	NE_SVD_NOT_CONV
	NE_ZERO_DOF_RESID

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

