NAG Library Function Document

nag prob studentized range (g01emc)

1 Purpose

nag_prob_studentized_range (g01emc) returns the probability associated with the lower tail of the distribution of the Studentized range statistic.

2 Specification

3 Description

The externally Studentized range, q, for a sample, x_1, x_2, \ldots, x_r , is defined as:

$$q = \frac{\max(x_i) - \min(x_i)}{\hat{\sigma}_e},$$

where $\hat{\sigma}_e$ is an independent estimate of the standard error of the x_i 's. The most common use of this statistic is in the testing of means from a balanced design. In this case for a set of group means, $\bar{T}_1, \bar{T}_2, \ldots, \bar{T}_r$, the Studentized range statistic is defined to be the difference between the largest and smallest means, \bar{T}_{largest} and $\bar{T}_{\text{smallest}}$, divided by the square root of the mean-square experimental error, MS_{error} , over the number of observations in each group, n, i.e.,

$$q = \frac{\bar{T}_{\text{largest}} - \bar{T}_{\text{smallest}}}{\sqrt{MS_{\text{error}}/n}}.$$

The Studentized range statistic can be used as part of a multiple comparisons procedure such as the Newman–Keuls procedure or Duncan's multiple range test (see Montgomery (1984) and Winer (1970)).

For a Studentized range statistic the probability integral, P(q; v, r), for v degrees of freedom and r groups can be written as:

$$P(q; v, r) = C \int_0^\infty x^{v-1} e^{-vx^2/2} \left\{ r \int_{-\infty}^\infty \phi(y) [\Phi(y) - \Phi(y - qx)]^{r-1} \, dy \right\} dx,$$

where

$$C = \frac{v^{v/2}}{\Gamma(v/2)2^{v/2-1}}, \quad \phi(y) = \frac{1}{\sqrt{2\pi}}e^{-y^2/2} \quad \text{ and } \quad \varPhi(y) = \int_{-\infty}^{y} \phi(t) \, dt.$$

The above two-dimensional integral is evaluated using numerical quadrature with the upper and lower limits computed to give stated accuracy (see Section 7).

If the degrees of freedom v are greater than 2000 the probability integral can be approximated by its asymptotic form:

$$P(q;r) = r \int_{-\infty}^{\infty} \phi(y) [\Phi(y) - \Phi(y-q)]^{r-1} dy.$$

This integral is evaluated using nag_1d_quad_inf_1 (d01smc).

Mark 24 g01emc.1

g01emc NAG Library Manual

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications

Lund R E and Lund J R (1983) Algorithm AS 190: probabilities and upper quartiles for the studentized range *Appl. Statist.* **32(2)** 204–210

Montgomery D C (1984) Design and Analysis of Experiments Wiley

Winer B J (1970) Statistical Principles in Experimental Design McGraw-Hill

5 Arguments

1: \mathbf{q} – double

On entry: q, the Studentized range statistic.

Constraint: $\mathbf{q} > 0.0$.

2: \mathbf{v} – double

On entry: v, the number of degrees of freedom for the experimental error.

Constraint: $\mathbf{v} \geq 1.0$.

3: **ir** – Integer

On entry: r, the number of groups.

Constraint: $ir \geq 2$.

4: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

If on exit **fail.code** = NE_INT or NE_REAL, then nag_prob_studentized_range (g01emc) returns to 0.0.

6 Error Indicators and Warnings

NE ACCURACY

Warning – There is some doubt as to whether full accuracy has been achieved.

NE INT

```
On entry, i\mathbf{r} = \langle value \rangle. Constraint: i\mathbf{r} \geq 2.
```

$NE_INTERNAL_ERROR$

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

NE_REAL

```
On entry, \mathbf{q} = \langle value \rangle.
Constraint: \mathbf{q} > 0.0.
On entry, \mathbf{v} = \langle value \rangle.
Constraint: \mathbf{v} \geq 1.0.
```

g01emc.2 Mark 24

7 Accuracy

The returned value will have absolute accuracy to at least four decimal places (usually five), unless **fail.code** = NE_ACCURACY. When **fail.code** = NE_ACCURACY it is usual that the returned value will be a good estimate of the true value.

8 Parallelism and Performance

nag_prob_studentized_range (g01emc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

Please consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

The lower tail probabilities for the distribution of the Studentized range statistic are computed and printed for a range of values of q, ν and r.

10.1 Program Text

```
/* nag_prob_studentized_range (g01emc) Example Program.
* Copyright 2001 Numerical Algorithms Group.
 * Mark 7, 2001.
 * Mark 7b revised, 2004.
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg01.h>
int main(void)
  /* Scalars */
 Integer exit_status = 0;
 double q, v, valp;
Integer i, ir;
 NagError fail;
 INIT_FAIL(fail);
 printf(
          "nag_prob_studentized_range (g01emc) Example Program Results\n");
  /* Skip heading in data file */
 scanf("%*[^\n] ");
 printf("\n%s\n\n", "
                                V
                                      ir
                                            Quantile ");
 for (i = 1; i \le 3; ++i)
      scanf("%lf%lf%ld%*[^\n] ", &q, &v, &ir);
      /* nag_prob_studentized_range (g01emc).
       * Computes probability for the Studentized range statistic
      valp = nag_prob_studentized_range(q, v, ir, &fail);
      if (fail.code != NE_NOERROR)
        {
          printf(
                  "Error from nag_prob_studentized_range (g01emc).\n%s\n",
                  fail.message);
```

Mark 24 g01emc.3

NAG Library Manual

10.2 Program Data

```
nag_prob_studentized_range (g01emc) Example Program Data 4.6543 \quad 10.0 \quad 5 2.8099 \quad 60.0 \quad 12 4.2636 \quad 5.0 \quad 4
```

10.3 Program Results

 ${\tt nag_prob_studentized_range~(g01emc)~Example~Program~Results}$

4.6543 10.0 5 0.9500 2.8099 60.0 12 0.3000	ir	V	,	q v ir		1	q	
4.2636 5.0 4 0.9000	_	0.0	099 6	.8099 60.0 12	9	809	2.	

g01emc.4 (last) Mark 24