
NAG Library Function Document

nag_sparse_herm_chol_fac (f11jnc)

1 Purpose

nag_sparse_herm_chol_fac (f11jnc) computes an incomplete Cholesky factorization of a complex sparse
Hermitian matrix, represented in symmetric coordinate storage format. This factorization may be used as
a preconditioner in combination with nag_sparse_herm_chol_sol (f11jqc).

2 Specification

#include <nag.h>
#include <nagf11.h>

void nag_sparse_herm_chol_fac (Integer n, Integer nnz, Complex a[],
Integer la, Integer irow[], Integer icol[], Integer lfill, double dtol,
Nag_SparseSym_Fact mic, double dscale, Nag_SparseSym_Piv pstrat,
Integer ipiv[], Integer istr[], Integer *nnzc, Integer *npivm,
NagError *fail)

3 Description

nag_sparse_herm_chol_fac (f11jnc) computes an incomplete Cholesky factorization (see Meijerink and
Van der Vorst (1977)) of a complex sparse Hermitian n by n matrix A. It is designed specifically for
positive definite matrices, but may also work for some mildly indefinite cases. The factorization is
intended primarily for use as a preconditioner with the complex Hermitian iterative solver
nag_sparse_herm_chol_sol (f11jqc).

The decomposition is written in the form

A ¼M þR

where

M ¼ PLDLHPT

and P is a permutation matrix, L is lower triangular complex with unit diagonal elements, D is real
diagonal and R is a remainder matrix.

The amount of fill-in occurring in the factorization can vary from zero to complete fill, and can be
controlled by specifying either the maximum level of fill lfill, or the drop tolerance dtol. The
factorization may be modified in order to preserve row sums, and the diagonal elements may be
perturbed to ensure that the preconditioner is positive definite. Diagonal pivoting may optionally be
employed, either with a user-defined ordering, or using the Markowitz strategy (see Markowitz (1957)),
which aims to minimize fill-in. For further details see Section 9.

The sparse matrix A is represented in symmetric coordinate storage (SCS) format (see Section 2.1.2 in
the f11 Chapter Introduction). The array a stores all the nonzero elements of the lower triangular part of
A, while arrays irow and icol store the corresponding row and column indices respectively. Multiple
nonzero elements may not be specified for the same row and column index.

The preconditioning matrix M is returned in terms of the SCS representation of the lower triangular
matrix

C ¼ LþD�1 � I:

f11 – Large Scale Linear Systems f11jnc

Mark 24 f11jnc.1

../F11/f11jqc.pdf
../F11/f11jqc.pdf
../F11/f11intro.pdf
../F11/f11intro.pdf

4 References

Chan T F (1991) Fourier analysis of relaxed incomplete factorization preconditioners SIAM J. Sci. Statist.
Comput. 12(2) 668–680

Markowitz H M (1957) The elimination form of the inverse and its application to linear programming
Management Sci. 3 255–269

Meijerink J and Van der Vorst H (1977) An iterative solution method for linear systems of which the
coefficient matrix is a symmetric M-matrix Math. Comput. 31 148–162

Salvini S A and Shaw G J (1995) An evaluation of new NAG Library solvers for large sparse symmetric
linear systems NAG Technical Report TR1/95

Van der Vorst H A (1990) The convergence behaviour of preconditioned CG and CG-S in the presence
of rounding errors Lecture Notes in Mathematics (eds O Axelsson and L Y Kolotilina) 1457 Springer–
Verlag

5 Arguments

1: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 1.

2: nnz – Integer Input

On entry: the number of nonzero elements in the lower triangular part of the matrix A.

Constraint: 1 � nnz � n� nþ 1ð Þ=2.

3: a½la� – Complex Input/Output

On entry: the nonzero elements in the lower triangular part of the matrix A, ordered by increasing
row index, and by increasing column index within each row. Multiple entries for the same row
and column indices are not permitted. The function nag_sparse_herm_sort (f11zpc) may be used
to order the elements in this way.

On exit: the first nnz elements of a contain the nonzero elements of A and the next nnzc elements
contain the elements of the lower triangular matrix C. Matrix elements are ordered by increasing
row index, and by increasing column index within each row.

4: la – Integer Input

On entry: the dimension of the arrays a, irow and icol. These arrays must be of sufficient size to
store both A (nnz elements) and C (nnzc elements).

Constraint: la � 2� nnz.

5: irow½la� – Integer Input/Output
6: icol½la� – Integer Input/Output

On entry: the row and column indices of the nonzero elements supplied in a.

Constraints:

irow and icol must satisfy these constraints (which may be imposed by a call to
nag_sparse_herm_sort (f11zpc)):

1 � irow½i� � n and 1 � icol½i� � irow½i�, for i ¼ 0; 1; . . . ;nnz� 1;
irow½i � 1� < irow½i� or irow½i � 1� ¼ irow½i� and icol½i � 1� < icol½i�, for
i ¼ 1; 2; . . . ; nnz� 1.

On exit: the row and column indices of the nonzero elements returned in a.

f11jnc NAG Library Manual

f11jnc.2 Mark 24

../F11/f11zpc.pdf
../F11/f11zpc.pdf

7: lfill – Integer Input

On entry: if lfill � 0 its value is the maximum level of fill allowed in the decomposition (see
Section 9.2). A negative value of lfill indicates that dtol will be used to control the fill instead.

8: dtol – double Input

On entry: if lfill < 0, dtol is used as a drop tolerance to control the fill-in (see Section 9.2);
otherwise dtol is not referenced.

Constraint: if lfill < 0, dtol � 0:0.

9: mic – Nag_SparseSym_Fact Input

On entry: indicates whether or not the factorization should be modified to preserve row sums (see
Section 9.3).

mic ¼ Nag SparseSym ModFact
The factorization is modified.

mic ¼ Nag SparseSym UnModFact
The factorization is not modified.

Constraint: mic ¼ Nag SparseSym ModFact or Nag SparseSym UnModFact.

10: dscale – double Input

On entry: the diagonal scaling argument. All diagonal elements are multiplied by the factor
(1:0þ dscale) at the start of the factorization. This can be used to ensure that the preconditioner is
positive definite. See also Section 9.3.

11: pstrat – Nag_SparseSym_Piv Input

On entry: specifies the pivoting strategy to be adopted.

pstrat ¼ Nag SparseSym NoPiv
No pivoting is carried out.

pstrat ¼ Nag SparseSym MarkPiv
Diagonal pivoting aimed at minimizing fill-in is carried out, using the Markowitz strategy
(see Markowitz (1957)).

pstrat ¼ Nag SparseSym UserPiv
Diagonal pivoting is carried out according to the user-defined input array ipiv.

Suggested value: pstrat ¼ Nag SparseSym MarkPiv.

Constraint: pstrat ¼ Nag SparseSym NoPiv, Nag SparseSym MarkPiv or
Nag SparseSym UserPiv.

12: ipiv½n� – Integer Input/Output

On entry: if pstrat ¼ Nag SparseSym UserPiv, ipiv½i� 1� must specify the row index of the
diagonal element to be used as a pivot at elimination stage i. Otherwise ipiv need not be
initialized.

Constraint: if pstrat ¼ Nag SparseSym UserPiv, ipiv must contain a valid permutation of the
integers on 1; n½ �.
On exit: the pivot indices. If ipiv½i� 1� ¼ j, the diagonal element in row j was used as the pivot
at elimination stage i.

13: istr½nþ 1� – Integer Output

On exit: istr½i � 1� � 1, for i ¼ 1; 2; . . . ; n, is the starting address in the arrays a, irow and icol of
row i of the matrix C. istr½n� � 1 is the address of the last nonzero element in C plus one.

f11 – Large Scale Linear Systems f11jnc

Mark 24 f11jnc.3

14: nnzc – Integer * Output

On exit: the number of nonzero elements in the lower triangular matrix C.

15: npivm – Integer * Output

On exit: the number of pivots which were modified during the factorization to ensure that M was
positive definite. The quality of the preconditioner will generally depend on the returned value of
npivm. If npivm is large the preconditioner may not be satisfactory. In this case it may be
advantageous to call nag_sparse_herm_chol_fac (f11jnc) again with an increased value of either
lfill or dscale. See also Sections 9.3 and 9.4.

16: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, n ¼ valueh i.
Constraint: n � 1.

On entry, nnz ¼ valueh i.
Constraint: nnz � 1.

NE_INT_2

On entry, la ¼ valueh i and nnz ¼ valueh i.
Constraint: la � 2� nnz.

On entry, nnz ¼ valueh i and n ¼ valueh i.
Constraint: nnz � n� nþ 1ð Þ=2

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

A serious error has occurred in an internal call to nag_sparse_herm_sort (f11zpc). Check all
function calls and array sizes. Seek expert help.

NE_INVALID_ROWCOL_PIVOT

On entry, a user-supplied value of ipiv is repeated.

On entry, a user-supplied value of ipiv lies outside the range [1,n].

NE_INVALID_SCS

On entry, I ¼ valueh i, icol½I � 1� ¼ valueh i and irow½I � 1� ¼ valueh i.
Constraint: icol½I � 1� � 1 and icol½I � 1� � irow½I � 1�.
On entry, I ¼ valueh i, irow½I � 1� ¼ valueh i and n ¼ valueh i.
Constraint: irow½I � 1� � 1 and irow½I � 1� � n.

f11jnc NAG Library Manual

f11jnc.4 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf
../F11/f11zpc.pdf

NE_NOT_STRICTLY_INCREASING

On entry, a½i� 1� is out of order: i ¼ valueh i.
On entry, the location (irow½I � 1�; icol½I � 1�) is a duplicate: I ¼ valueh i. Consider calling
nag_sparse_herm_sort (f11zpc) to reorder and sum or remove duplicates.

NE_REAL

On entry, dtol ¼ valueh i.
Constraint: dtol � 0:0

NE_TOO_SMALL

The number of nonzero entries in the decomposition is too large. The decomposition has been
terminated before completion. Either increase la, or reduce the fill by setting
pstrat ¼ Nag SparseSym MarkPiv, reducing lfill, or increasing dtol.

7 Accuracy

The accuracy of the factorization will be determined by the size of the elements that are dropped and the
size of any modifications made to the diagonal elements. If these sizes are small then the computed
factors will correspond to a matrix close to A. The factorization can generally be made more accurate by
increasing lfill, or by reducing dtol with lfill < 0.

If nag_sparse_herm_chol_fac (f11jnc) is used in combination with nag_sparse_herm_chol_sol (f11jqc),
the more accurate the factorization the fewer iterations will be required. However, the cost of the
decomposition will also generally increase.

8 Parallelism and Performance

nag_sparse_herm_chol_fac (f11jnc) is not threaded by NAG in any implementation.

nag_sparse_herm_chol_fac (f11jnc) makes calls to BLAS and/or LAPACK routines, which may be
threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the Users’ Note for your implementation for any additional implementation-specific
information.

9 Further Comments

9.1 Timing

The time taken for a call to nag_sparse_herm_chol_fac (f11jnc) is roughly proportional to nnzc2=n.

9.2 Control of Fill-in

If lfill � 0, the amount of fill-in occurring in the incomplete factorization is controlled by limiting the
maximum ‘level’ of fill-in to lfill. The original nonzero elements of A are defined to be of level 0. The
fill level of a new nonzero location occurring during the factorization is defined as:

k ¼ max ke; kcð Þ þ 1;

where ke is the level of fill of the element being eliminated, and kc is the level of fill of the element
causing the fill-in.

If lfill < 0, the fill-in is controlled by means of the ‘drop tolerance’ dtol. A potential fill-in element aij
occurring in row i and column j will not be included if

aij
�� �� < dtol�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aiiajj
�� ��

q
:

f11 – Large Scale Linear Systems f11jnc

Mark 24 f11jnc.5

../F11/f11zpc.pdf
../F11/f11zpc.pdf
../F11/f11jqc.pdf

For either method of control, any elements which are not included are discarded if
mic ¼ Nag SparseSym UnModFact, or subtracted from the diagonal element in the elimination row if
mic ¼ Nag SparseSym ModFact.

9.3 Choice of Arguments

There is unfortunately no choice of the various algorithmic arguments which is optimal for all types of
complex Hermitian matrix, and some experimentation will generally be required for each new type of
matrix encountered.

If the matrix A is not known to have any particular special properties, the following strategy is
recommended. Start with lfill ¼ 0, mic ¼ Nag SparseSym UnModFact and dscale ¼ 0:0. If the value
returned for npivm is significantly larger than zero, i.e., a large number of pivot modifications were
required to ensure that M was positive definite, the preconditioner is not likely to be satisfactory. In this
case increase either lfill or dscale until npivm falls to a value close to zero. Once suitable values of lfill
and dscale have been found try setting mic ¼ Nag SparseSym ModFact to see if any improvement can
be obtained by using modified incomplete Cholesky.

nag_sparse_herm_chol_fac (f11jnc) is primarily designed for positive definite matrices, but may work for
some mildly indefinite problems. If npivm cannot be satisfactorily reduced by increasing lfill or dscale
then A is probably too indefinite for this function.

For certain classes of matrices (typically those arising from the discretization of elliptic or parabolic
partial differential equations), the convergence rate of the preconditioned iterative solver can sometimes
be significantly improved by using an incomplete factorization which preserves the row-sums of the
original matrix. In these cases try setting mic ¼ Nag SparseSym ModFact.

9.4 Direct Solution of positive definite Systems

Although it is not their primary purpose, nag_sparse_herm_chol_fac (f11jnc) and
nag_sparse_herm_precon_ichol_solve (f11jpc) may be used together to obtain a direct solution to a
complex Hermit ian posi t ive defini te l inear sys tem. To achieve this the cal l to
nag_sparse_herm_precon_ichol_solve (f11jpc) should be preceded by a complete Cholesky factorization

A ¼ PLDLHPT ¼M:

A complete factorization is obtained from a call to nag_sparse_herm_chol_fac (f11jnc) with lfill < 0 and
dtol ¼ 0:0, provided npivm ¼ 0 on exit. A nonzero value of npivm indicates that a is not positive
definite, or is ill-conditioned. A factorization with nonzero npivm may serve as a preconditioner, but will
not result in a direct solution. It is therefore essential to check the output value of npivm if a direct
solution is required.

The use of nag_sparse_herm_chol_fac (f11jnc) and nag_sparse_herm_precon_ichol_solve (f11jpc) as a
direct method is illustrated in nag_sparse_herm_precon_ichol_solve (f11jpc).

10 Example

This example reads in a complex sparse Hermitian matrix A and calls nag_sparse_herm_chol_fac
(f11jnc) to compute an incomplete Cholesky factorization. It then outputs the nonzero elements of both
A and C ¼ LþD�1 � I.

The call to nag_sparse_herm_chol_fac (f11jnc) has lfill ¼ 0, mic ¼ Nag SparseSym UnModFact,
dscale ¼ 0:0 and pstrat ¼ Nag SparseSym MarkPiv, giving an unmodified zero-fill factorization of an
unperturbed matrix, with Markowitz diagonal pivoting.

10.1 Program Text

/* nag_sparse_herm_chol_fac (f11jnc) Example Program.
*
* Copyright 2011, Numerical Algorithms Group.
*
* Mark 23, 2011.
*/

f11jnc NAG Library Manual

f11jnc.6 Mark 24

../F11/f11jpc.pdf
../F11/f11jpc.pdf
../F11/f11jpc.pdf
../F11/f11jpc.pdf

#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf11.h>

int main(void)
{

/* Scalars */
Integer exit_status = 0;
double dscale, dtol;
Integer i, la, lfill, n, nnz, nnzc, npivm;
/* Arrays */
Complex *a = 0;
Integer *icol = 0, *ipiv = 0, *irow = 0, *istr = 0;
char nag_enum_arg[100];
/* NAG types */
Nag_SparseSym_Piv pstrat;
Nag_SparseSym_Fact mic;
NagError fail;

INIT_FAIL(fail);

printf("nag_sparse_herm_chol_fac (f11jnc) Example Program Results\n");
/* Skip heading in data file*/
scanf("%*[^\n]");
/* Read algorithmic parameters*/
scanf("%ld%*[^\n]%ld%*[^\n]", &n, &nnz);

/* Allocate memory */
la = 3 * nnz;
if (

!(a = NAG_ALLOC(la, Complex)) ||
!(icol = NAG_ALLOC(la, Integer)) ||
!(ipiv = NAG_ALLOC(n, Integer)) ||
!(irow = NAG_ALLOC(la, Integer)) ||
!(istr = NAG_ALLOC(n + 1, Integer))
)

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
scanf("%ld%lf%*[^\n]", &lfill, &dtol);
scanf("%99s%*[^\n]", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/

mic = (Nag_SparseSym_Fact) nag_enum_name_to_value(nag_enum_arg);
scanf("%lf%*[^\n]", &dscale);
scanf("%99s%*[^\n]", nag_enum_arg);
pstrat = (Nag_SparseNsym_Piv) nag_enum_name_to_value(nag_enum_arg);

/* Read the matrix a */
for (i = 0; i < nnz; i++)

scanf(" (%lf , %lf) %ld%ld%*[^\n] ",
&a[i].re, &a[i].im, &irow[i], &icol[i]);

/* Calculate incomplete Cholesky factorization using
* nag_sparse_herm_chol_fac (f11jnc).
*/

nag_sparse_herm_chol_fac(n, nnz, a, la, irow, icol, lfill, dtol, mic, dscale,
pstrat, ipiv, istr, &nnzc, &npivm, &fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_sparse_herm_chol_fac (f11jnc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

f11 – Large Scale Linear Systems f11jnc

Mark 24 f11jnc.7

/* Output original matrix*/
printf(" Original Matrix \n");
printf(" n = %4ld, nnz = %4ld\n", n, nnz);
printf("%8s%16s%23s%9s\n","i","a[i]","irow[i]","icol[i]");
for (i = 0; i < nnz; i++)

printf("%8ld (%13.4e, %13.4e) %8ld %8ld \n",
i, a[i].re, a[i].im, irow[i], icol[i]);

printf("\n");

/* Output details of the factorization*/
printf(" Factorization \n");
printf(" n = %4ld, nnzc = %4ld, npivm = %4ld\n",

n, nnzc, npivm);
printf("%8s%16s%23s%9s\n","i","a[i]","irow[i]","icol[i]");
for (i = nnz; i < nnz + nnzc; i++)

printf("%8ld (%13.4e, %13.4e) %8ld %8ld \n",
i , a[i].re, a[i].im, irow[i], icol[i]);

printf("\n%8s%12s\n","i","ipiv[i-1]");
for (i = 1; i <= n; i++)

printf("%8ld%8ld\n", i, ipiv[i-1]);

END:
NAG_FREE(a);
NAG_FREE(icol);
NAG_FREE(ipiv);
NAG_FREE(irow);
NAG_FREE(istr);
return exit_status;

}

10.2 Program Data

nag_sparse_herm_chol_fac (f11jnc) Example Program Data
7 : n

16 : nnz
0 0.0 : lfill, dtol
Nag_SparseSym_UnModFact : mic
0.0 : dscale
Nag_SparseSym_MarkPiv : pstrat
(6., 0.) 1 1
(1.,-2.) 2 1
(9., 0.) 2 2
(4., 0.) 3 3
(2., 2.) 4 2
(5., 0.) 4 4
(0.,-1.) 5 1
(1., 0.) 5 4
(4., 0.) 5 5
(1., 3.) 6 2
(0.,-2.) 6 5
(3., 0.) 6 6
(2., 1.) 7 1
(-1., 0.) 7 2
(-3.,-1.) 7 3
(5., 0.) 7 7 : a[i], irow[i], icol[i] i=0,...,nnz-1

10.3 Program Results

nag_sparse_herm_chol_fac (f11jnc) Example Program Results
Original Matrix
n = 7, nnz = 16

i a[i] irow[i] icol[i]
0 (6.0000e+00, 0.0000e+00) 1 1
1 (1.0000e+00, -2.0000e+00) 2 1
2 (9.0000e+00, 0.0000e+00) 2 2
3 (4.0000e+00, 0.0000e+00) 3 3
4 (2.0000e+00, 2.0000e+00) 4 2
5 (5.0000e+00, 0.0000e+00) 4 4
6 (0.0000e+00, -1.0000e+00) 5 1
7 (1.0000e+00, 0.0000e+00) 5 4

f11jnc NAG Library Manual

f11jnc.8 Mark 24

8 (4.0000e+00, 0.0000e+00) 5 5
9 (1.0000e+00, 3.0000e+00) 6 2

10 (0.0000e+00, -2.0000e+00) 6 5
11 (3.0000e+00, 0.0000e+00) 6 6
12 (2.0000e+00, 1.0000e+00) 7 1
13 (-1.0000e+00, 0.0000e+00) 7 2
14 (-3.0000e+00, -1.0000e+00) 7 3
15 (5.0000e+00, 0.0000e+00) 7 7

Factorization
n = 7, nnzc = 16, npivm = 0

i a[i] irow[i] icol[i]
16 (2.5000e-01, 0.0000e+00) 1 1
17 (2.0000e-01, 0.0000e+00) 2 2
18 (2.0000e-01, 0.0000e+00) 3 2
19 (2.6316e-01, 0.0000e+00) 3 3
20 (0.0000e+00, -5.2632e-01) 4 3
21 (5.1351e-01, 0.0000e+00) 4 4
22 (0.0000e+00, 2.6316e-01) 5 3
23 (1.7431e-01, 0.0000e+00) 5 5
24 (-7.5000e-01, -2.5000e-01) 6 1
25 (3.4862e-01, 1.7431e-01) 6 5
26 (6.1408e-01, 0.0000e+00) 6 6
27 (4.0000e-01, -4.0000e-01) 7 2
28 (5.1351e-01, -1.5405e+00) 7 4
29 (1.7431e-01, -3.4862e-01) 7 5
30 (-6.1408e-01, 5.3521e-01) 7 6
31 (3.1974e+00, 0.0000e+00) 7 7

i ipiv[i-1]
1 3
2 4
3 5
4 6
5 1
6 7
7 2

f11 – Large Scale Linear Systems f11jnc

Mark 24 f11jnc.9 (last)

	f11jnc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Chan (1991)
	Markowitz (1957)
	Meijerink and Van der Vorst (1977)
	Salvini and Shaw (1995)
	Van der Vorst (1990)

	5 Arguments
	n
	nnz
	a
	la
	irow
	icol
	lfill
	dtol
	mic
	dscale
	pstrat
	ipiv
	istr
	nnzc
	npivm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_INVALID_ROWCOL_PIVOT
	NE_INVALID_SCS
	NE_NOT_STRICTLY_INCREASING
	NE_REAL
	NE_TOO_SMALL

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	9.1 Timing
	9.2 Control of Fill-in
	9.3 Choice of Arguments
	9.4 Direct Solution of positive definite Systems

	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

