f11 — Large Scale Linear Systems flljce

NAG Library Function Document

nag_sparse_sym_chol sol (fl1jcc)

1 Purpose

nag_sparse_sym_chol sol (flljcc) solves a real sparse symmetric system of linear equations, represented
in symmetric coordinate storage format, using a conjugate gradient or Lanczos method, with incomplete
Cholesky preconditioning.

2 Specification

#include <nag.h>
#include <nagfll.h>

void nag_sparse_sym _chol_sol (Nag_SparseSym_Method method, Integer n,
Integer nnz, const double al[], Integer la, const Integer irowl[],
const Integer icol[], const Integer ipiv([], const Integer istr[],
const double b[], double tol, Integer maxitn, double x[], double *rnorm,
Integer *itn, Nag_Sparse_Comm *comm, NagError *fail)

3 Description

nag_sparse_sym_chol sol (fl11jcc) solves a real sparse symmetric linear system of equations:
Ax = b,

using a preconditioned conjugate gradient method (Meijerink and Van der Vorst (1977)), or a
preconditioned Lanczos method based on the algorithm SYMMLQ (Paige and Saunders (1975)). The
conjugate gradient method is more efficient if A is positive definite, but may fail to converge for
indefinite matrices. In this case the Lanczos method should be used instead. For further details see
Barrett et al. (1994).

nag_sparse sym chol sol (flljcc) uses the incomplete Cholesky factorization determined by
nag_sparse_sym_chol fac (flljac) as the preconditioning matrix. A call to nag sparse _sym chol sol
(fl1jec) must always be preceded by a call to nag sparse sym chol fac (flljac). Alternative
preconditioners for the same storage scheme are available by calling nag_sparse_sym_sol (fl1jec).

The matrix A, and the preconditioning matrix M, are represented in symmetric coordinate storage (SCS)
format (see the fl1 Chapter Introduction) in the arrays a, irow and icol, as returned from
nag_sparse_sym_chol fac (flljac). The array a holds the nonzero entries in the lower triangular parts
of these matrices, while irow and icol hold the corresponding row and column indices.

4 References

Barrett R, Berry M, Chan T F, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C and Van
der Vorst H (1994) Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods
SIAM, Philadelphia

Meijerink J and Van der Vorst H (1977) An iterative solution method for linear systems of which the
coefficient matrix is a symmetric M-matrix Math. Comput. 31 148—162

Paige C C and Saunders M A (1975) Solution of sparse indefinite systems of linear equations SIAM J.
Numer. Anal. 12 617-629

Salvini S A and Shaw G J (1995) An evaluation of new NAG Library solvers for large sparse symmetric
linear systems NAG Technical Report TR1/95

Mark 24 flijcc.1

../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jec.pdf
../F11/f11intro.pdf
../F11/f11jac.pdf

flljcc NAG Library Manual

S Arguments

1: method — Nag_ SparseSym_Method Input
On entry: specifies the iterative method to be used.

method = Nag_SparseSym_CG
The conjugate gradient method is used.

method = Nag_SparseSym_Lanczos
The Lanczos method, SYMMLAQ is used.

Constraint: method = Nag_SparseSym_CG or Nag_SparseSym_Lanczos.

2: n — Integer Input

On entry: the order of the matrix A. This must be the same value as was supplied in the preceding
call to nag_sparse sym_chol fac (fl1jac).

Constraint: n > 1.

3: nnz — Integer Input

On entry: the number of nonzero elements in the lower triangular part of the matrix A. This must
be the same value as was supplied in the preceding call to nag_sparse sym chol fac (fl1jac).

Constraint: 1 <nnz <n x (n+ 1)/2.

4: afla] — const double Input

On entry: the values returned in array a by a previous call to nag_sparse sym_chol fac (flljac).

5: la — Integer Input

On entry: the second dimension of the arrays a, irow and icol.This must be the same value as
returned by a previous call to nag sparse sym chol fac (flljac).

Constraint: la > 2 X nnz.

6: irow[la] — const Integer Input

7: icol[la] — const Integer Input

8: ipiv[n] — const Integer Input

9: istr[n 4+ 1] — const Integer Input
On entry: the values returned in the arrays irow, icol, ipiv and istr by a previous call to
nag_sparse_sym_chol fac (fl1ljac).

10: b[n] — const double Input

On entry: the right-hand side vector b.

11: tol — double Input

On entry: the required tolerance. Let x;, denote the approximate solution at iteration &, and r; the
corresponding residual. The algorithm is considered to have converged at iteration k if:

7kl < 7% (1Bl + 1Al 12kl oo) -

If tol < 0.0, 7=max(\/e,/ne) is used, where € is the machine precision. Otherwise
7 = max(tol, 10¢, /n, €) is used.

Constraint: tol < 1.0.

flljcc.2 Mark 24

../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf

f11 — Large Scale Linear Systems flljce

12:

13:

14:

15:

16:

17:

6

maxitn — Integer Input
On entry: the maximum number of iterations allowed.

Constraint: maxitn > 1.

x[n] — double Input/Output
On entry: an initial approximation to the solution vector z.

On exit: an improved approximation to the solution vector z.

rnorm — double * Output

On exit: the final value of the residual norm ||r||,, where k is the output value of itn.

00?
itn — Integer * Output

On exit: the number of iterations carried out.

comm — Nag Sparse_Comm * Input/Output

On entry/exit: a pointer to a structure of type Nag Sparse Comm whose members are used by the
iterative solver.

fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Error Indicators and Warnings

NE_2 INT_ARG_LT

On entry, la = (value) while nnz = (value). These arguments must satisfy la > 2 x nnz

NE_ACC_LIMIT

The required accuracy could not be obtained. However, a reasonable accuracy has been obtained
and further iterations cannot improve the result.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument method had an illegal value.

NE_COEFF_NOT_POS_DEF

The matrix of coefficients appears not to be positive definite.

NE_INT 2

On entry, nnz = (value), n = (value).
Constraint: 1 <nnz <n x (n+ 1)/2.

NE_INT _ARG_LT

On entry, maxitn = (value).
Constraint: maxitn > 1.

On entry, n = (value).
Constraint: n > 1.

Mark 24 flljce.3

../GENINT/essint.pdf
../GENINT/essint.pdf

flljcc NAG Library Manual

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_INVALID_SCS
The SCS representation of the matrix A is invalid. Check that the call to

nag_sparse_sym_chol sol (f11jcc) has been preceded by a valid call to nag_sparse sym chol fac
(f11jac), and that the arrays a, irow and icol have not been corrupted between the two calls.
NE_INVALID SCS_PRECOND

The SCS representation of the preconditioning matrix M is invalid. Check that the call to
nag_sparse_sym_chol sol (f11jcc) has been preceded by a valid call to nag_sparse sym chol fac
(f11jac), and that the arrays a, irow, icol, ipiv and istr have not been corrupted between the two
calls.

NE_NOT_REQ_ACC

The required accuracy has not been obtained in maxitn iterations.

NE_PRECOND_NOT_POS_DEF

The preconditioner appears not to be positive definite.

NE_REAL_ARG_GE

On entry, tol must not be greater than or equal to 1.0: tol = (value).

7 Accuracy

On successful termination, the final residual 7, = b — Axy, where k = itn, satisfies the termination
criterion

Irlle < 7 (I8l + 1Al Ikl oo)-

The value of the final residual norm is returned in rnorm.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by nag sparse sym chol sol (flljcc) for each iteration is roughly proportional to the
value of nnzc returned from the preceding call to nag sparse sym_chol fac (flljac). One iteration with
the Lanczos method (SYMMLQ) requires a slightly larger number of operations than one iteration with
the conjugate gradient method.

The number of iterations required to achieve a prescribed accuracy cannot be easily determined a priori,
as it can depend dramatically on the conditioning and spectrum of the preconditioned matrix of the
coefficients A = M~ A.

Some illustrations of the application of nag_sparse sym_chol _sol (fl11jcc) to linear systems arising from
the discretization of two-dimensional elliptic partial differential equations, and to random-valued
randomly structured symmetric positive definite linear systems, can be found in Salvini and Shaw
(1995).

flljcc.4 Mark 24

../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf

f11 — Large Scale Linear Systems

10 Example

flljce

This example program solves a symmetric positive definite system of equations using the conjugate

gradient method, with incomplete Cholesky preconditioning.

10.1 Program Text

/* nag_sparse_sym_chol_sol (flljcc) Example Program.

Copyright 1998 Numerical Algorithms Group.

* % F Ok F

Mark 5, 1998.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nag_string.h>
#include <nagfll.h>

int main(void)

{
double dtol;
double *a = 0, *b = 0;
double *x = 0;
double rnorm, dscale;
double tol;
Integer exit_status = 0;
Integer *icol = 0;
Integer *ipiv = 0, nnzc, *irow = 0, *istr = 0;
Integer i;
Integer n;
Integer 1fill, npivm;
Integer maxitn;
Integer itn;
Integer nnz;
Integer num;
char nag_enum_arg[40];
Nag_SparseSym_Method method;
Nag_SparseSym_Piv pstrat;
Nag_SparseSym_Fact mic;
Nag_Sparse_Comm comm;
NagError fail;
INIT_FAIL(fail);
printf("nag_sparse_sym_chol_sol (flljcc) Example Program Results\n");
/* Skip heading in data file */
scanf (" %*["\nl");
/* Read algorithmic parameters */
scanf ("%1ds*["\nl", &n);
scanf ("$1ds*[*\nl", &nnz);
scanf ("%$1ds1f%*["\n]", &1fill, &dtol);
scanf ("%$39s%*["\nl", nag_enum_arg) ;
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*
/
method = (Nag_SparseSym Method) nag_enum_name_to_value(nag_enum_arg) ;
scanf ("%$39s%1f%*[*\nl]", nag_enum_arg, &dscale);
mic = (Nag_SparseSym_Fact) nag_enum_name_to_value(nag_enum_arg) ;
scanf ("%$39s%*[*\nl]", nag_enum_arg) ;
pstrat = (Nag_SparseSym_Piv) nag_enum_name_to_value(nag_enum_arg) ;
scanf ("%$1f%1d%*["\n]", &tol, &maxitn);
/* Read the matrix a */
Mark 24

flljce.5

flljcc NAG Library Manual

/* Allocate memory */

num = 2 * nnz;

irow = NAG_ALLOC (num, Integer);
icol = NAG_ALLOC (num, Integer);
a = NAG_ALLOC (num, double) ;

b = NAG_ALLOC(n, double);

x = NAG_ALLOC(n, double);

istr = NAG_ALLOC(n+1l, Integer);
ipiv = NAG_ALLOC (num, Integer);

if (!irow || l'icol || ta || !x || !distr || !ipiv)
{
printf("Allocation failure\n");
return EXIT FAILURE;

}

for (i = 1; 1 <= nnz; ++1i)
scanf ("%1f%1d%1d%*["\n]", &ali-1], &irow[i-1], &icol[i-1]);

/* Read right-hand side vector b and initial approximate solution x */
for (i =1; i <= n; ++i)
scanf ("s1f", &b[i-1]);

scanf (" $*[*\nl]");

1

[

for (i
scanf

= i <= n; ++1)
(
scanf ("%*

if", &x[i-1]);
\nl");

/* Calculate incomplete Cholesky factorization */

/* nag_sparse_sym_chol_fac (flljac).
* Incomplete Cholesky factorization (symmetric)
*
/
nag_sparse_sym_chol_fac(n, nnz, &a, &num, &irow, &icol, 1fill, dtol, mic,
dscale, pstrat, ipiv, istr, &nnzc, &npivm, &comm,
&fail);
if (fail.code != NE_NOERROR)
{
printf ("Error from nag_sparse_sym_chol_fac (flljac).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
}

/* Solve Ax = Db */

/* nag_sparse_sym_chol_sol (flljcc).

* Solver with incomplete Cholesky preconditioning

* (symmetric)

*/
nag_sparse_sym_chol_sol(method, n, nnz, a, num, irow, icol, ipiv, istr, b,

tol, maxitn, x, &rnorm, &itn, &comm, &fail);
if (fail.code != NE_NOERROR)
{
printf ("Error from nag_sparse_sym chol_sol (flljcc).\n%ss\n",
fail.message) ;

exit_status = 1;
goto END;
}
printf (" %s%101d%s\n", "Converged in", itn, " iterations");
printf (" %s%16.3e\n", "Final residual norm =", rnorm);

/* Output x */

for (i = 1; i <= n; ++1i)
printf (" %16.4e\n", x[i-1]);

END:
NAG_FREE (irow) ;

flljcc.6 Mark 24

f11 — Large Scale Linear Systems flljce

NAG_FREE (icol) ;
NAG_FREE (a) ;
NAG_FREE (b) ;
NAG_FREE (x) ;
NAG_FREE (ipiv) ;
NAG_FREE (istr) ;

return exit_status;

10.2 Program Data

nag_sparse_sym_chol_sol (flljcc) Example Program Data

7 n

16 nnz

1 0.0 1fill, dtol
Nag_SparseSym_CG method
Nag_SparseSym _UnModFact 0.0 mic dscale
Nag_SparseSym_MarkPiv pstrat
1.0e-6 100 tol, maxitn
4. 1 1

1. 2 1

5. 2 2

2. 3 3

2. 4 2

3. 4 4
-1. 5 1

1. 5 4

4. 5 5

1. 6 2
-2. 6 5

3. 9 6

2. 7 1
-1. 7 2
-2. 7 3

5. 7 7 ali-1], dirow[i-1], dicol[i-1], i=1,...,nnz
5. 18. =-8. 21.

11. 10. 29. b[i-1], i=1,...,n

0. 0. 0. 0.

0. 0. 0. x[i-1], i=1,...,n

10.3 Program Results

nag_sparse_sym_chol_sol (flljcc) Example Program Results
Converged in 1 iterations
Final residual norm = 0.000e+00

.0000e+00

.0000e+00

.0000e+00

.0000e+00

.0000e+00

.0000e+00

.0000e+00

~NOoO U WN R

Mark 24 flljcc.7 (last)

	f11jcc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Barrett et al. (1994)
	Meijerink and Van der Vorst (1977)
	Paige and Saunders (1975)
	Salvini and Shaw (1995)

	5 Arguments
	method
	n
	nnz
	a
	la
	irow
	icol
	ipiv
	istr
	b
	tol
	maxitn
	x
	rnorm
	itn
	comm
	fail

	6 Error Indicators and Warnings
	NE_2_INT_ARG_LT
	NE_ACC_LIMIT
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_COEFF_NOT_POS_DEF
	NE_INT_2
	NE_INT_ARG_LT
	NE_INTERNAL_ERROR
	NE_INVALID_SCS
	NE_INVALID_SCS_PRECOND
	NE_NOT_REQ_ACC
	NE_PRECOND_NOT_POS_DEF
	NE_REAL_ARG_GE

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

