11 — Large Scale Linear Systems flljbc
g). J

NAG Library Function Document

nag_sparse_sym_precon_ichol _solve (f11jbc)

1 Purpose

nag_sparse_sym precon_ichol solve (flljbc) solves a system of linear equations involving the
incomplete Cholesky preconditioning matrix generated by nag sparse sym chol fac (flljac).

2 Specification

#include <nag.h>
#include <nagfll.h>

void nag_sparse_sym _precon_ichol_solve (Integer n, const double all,
Integer la, const Integer irow([], const Integer icoll[],
const Integer ipiv[], const Integer istr([],
Nag_SparseSym_CheckData check, const double y[], double x[],
NagError *fail)

3 Description
nag_sparse_sym_precon_ichol solve (fl1jbc) solves a system of linear equations
Mz =y

involving the preconditioning matrix M = PLDLTPT, corresponding to an incomplete Cholesky
decomposition of a sparse symmetric matrix stored in symmetric coordinate storage (SCS) format (see
Section 2.1.2 in the f11 Chapter Introduction), as generated by nag_sparse_sym_chol fac (f11jac).

In the above decomposition L is a lower triangular sparse matrix with unit diagonal, D is a diagonal
matrix and P is a permutation matrix. L and D are supplied to nag sparse sym precon ichol solve
(f11jbc) through the matrix

C=L+D"'—1I

which is a lower triangular n by n sparse matrix, stored in SCS format, as returned by
nag sparse_sym chol fac (flljac). The permutation matrix P is returned from
nag_sparse_sym_chol fac (f11jac) via the array ipiv.

It is envisaged that a common use of nag_sparse sym precon_ichol solve (f11jbc) will be to carry out
the preconditioning step required in the application of nag sparse sym_basic_solver (fllgec) to sparse
symmetric linear systems. nag_sparse sym precon_ichol solve (fl1jbc) is used for this purpose by the
Black Box function nag_sparse_sym_chol sol (flljcc).

nag sparse_sym_precon_ichol solve (flljbc) may also be used in combination with
nag_sparse_sym_chol fac (flljac) to solve a sparse symmetric positive definite system of linear
equations directly (see Section 9.4 in nag sparse sym chol fac (flljac)). This use of
nag_sparse_sym_precon_ichol solve (fl1jbc) is demonstrated in Section 10.

4 References

None.

Mark 24 flljbc.1

../F11/f11jac.pdf
../F11/f11intro.pdf
../F11/f11intro.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11gec.pdf
../F11/f11jcc.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf

flljbc NAG Library Manual

S Arguments

1: n — Integer Input

On entry: n, the order of the matrix M. This must be the same value as was supplied in the
preceding call to nag_sparse_sym_chol fac (flljac).

Constraint: n > 1.

2: a[la] — const double Input
On entry: the values returned in the array a by a previous call to nag sparse sym chol fac
(f11jac).

3: la — Integer Input

On entry: the dimension of the arrays a, irow and icol. This must be the same value returned by
the preceding call to nag_sparse sym_chol fac (f11jac).

4: irow[la] — const Integer Input
5: icol[la] — const Integer Input
6: ipiv[n] — const Integer Input
7: istr[n + 1] — const Integer Input
On entry: the values returned in arrays irow, icol, ipiv and istr by a previous call to
nag_sparse_sym_chol fac (f11jac).
8: check — Nag SparseSym_CheckData Input
On entry: specifies whether or not the input data should be checked.
check = Nag_SparseSym_Check
Checks are carried out on the values of n, irow, icol, ipiv and istr.
check = Nag_SparseSym_NoCheck
No checks are carried out.
See also Section 9.2.
Constraint: check = Nag_SparseSym_Check or Nag_SparseSym_NoCheck.
9: y[n] — const double Input
On entry: the right-hand side vector .
10: x[n] — double Output
On exit: the solution vector z.
11: fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

flljbc.2 Mark 24

../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf

11 — Large Scale Linear Systems fl1ljbc
g). J

NE_INT

On entry, n = (value).
Constraint: n > 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_INVALID_ROWCOL_PIVOT

Check that a, irow, icol, ipiv and istr have not been corrupted between calls to
nag_sparse_sym_chol fac (flljac) and nag sparse sym precon ichol solve (fl1jbc).

NE_INVALID_SCS

Check that a, irow, icol, ipiv and istr have not been corrupted between calls to
nag_sparse_sym_chol fac (flljac) and nag_sparse_sym precon ichol solve (flljbc).

NE_INVALID_SCS_PRECOND

Check that a, irow, icol, ipiv and istr have not been corrupted between calls to
nag_sparse_sym_chol fac (flljac) and nag_sparse_sym_ precon ichol solve (fl1jbc).

NE_NOT_STRICTLY_ INCREASING

Check that a, irow, icol, ipiv and istr have not been corrupted between calls to
nag_sparse_sym_chol fac (f11jac) and nag_sparse_sym precon_ichol solve (fl11jbc).

7 Accuracy

The computed solution z is the exact solution of a perturbed system of equations (M + 6 M)z =y,
where

|6M| < c(n)eP|L||D||LT|PT,

c(n) is a modest linear function of n, and € is the machine precision.

8 Parallelism and Performance

Not applicable.

9 Further Comments
9.1 Timing

The time taken for a call to nag_sparse sym precon_ichol solve (fl11jbc) is proportional to the value of
nnzc returned from nag_sparse _sym_chol fac (fl1jac).

9.2 Use of check

It is expected that a common use of nag sparse sym precon_ichol solve (fl11jbc) will be to carry out
the preconditioning step required in the application of nag sparse sym_basic_solver (fl1gec) to sparse
symmetric linear systems. In this situation nag_sparse_sym_precon_ichol solve (fl1jbc) is likely to be
called many times with the same matrix M. In the interests of both reliability and efficiency, you are
recommended to set check = Nag SparseSym_Check for the first of such calls, and to set
check = Nag_SparseSym_NoCheck for all subsequent calls.

Mark 24 flljbc.3

../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11gec.pdf

fl1jbe

10 Example

NAG Library Manual

This example reads in a symmetric positive definite sparse matrix A and a vector y. It then calls
nag_sparse_sym_chol fac (fl11jac), with Ifill = —1 and dtol = 0.0, to compute the complete Cholesky

decomposition of A:
A=PLDL"P".
Finally it calls nag_sparse sym precon_ichol solve (fl1jbc) to solve the system

PLDL'P 'z =y.

10.1 Program Text

/* nag_sparse_sym_precon_ichol_solve (flljbc) Example Program.

* Copyright 2011, Numerical Algorithms Group.
*

* Mark 23, 2011.
*/
#include <nag.h>

#include <nag_stdlib.h>
#include <nagfll.h>

int main(void)

{
/* Scalars */
Integer exit_status = 0;
double dscale, dtol;
Integer i, la, 1fill, n, nnz, nnzc, npivm;
/* Arrays */
double *a =0, *x =0, *y = 0;
Integer *jicol = 0, *ipiv = 0, *irow = 0, *istr
/* NAG types */
Nag_SparseSym_Fact mic;
Nag_SparseSym_Piv pstrat;
Nag_SparseSym_CheckData check;
Nag_Sparse_Comm comm;
NagError fail;

INIT_FAIL(fail);

printf ("nag_sparse_sym_precon_ichol_solve (flljbc) Example Program Results");

printf ("\n");

/* Skip heading in data file*/

scanf ("s*["\nl");

/* Read order of matrix and number of non-zero entries*/
scanf ("$1ds*["\nl", &n);

scanf ("$1ds*["\nl]", &nnz);

/* Allocate memory */

la = 3 * nnz;

if (

a = NAG_ALLOC(la, double))
x = NAG_ALLOC(n, double)) |
y = NAG_ALLOC(n, double)) |

(|
(

(

(icol = NAG_ALLOC

(

(

(

)
|

[
|
|
la, Integer)
n, Integer))
la, Integer)
n + 1, Integ

|
ipiv = NAG_ALLOC
irow = NAG_ALLOC
istr = NAG_ALLOC

—~ e~~~

|
|
[l
))

)
er
printf("Allocation failure\n");

exit_status = -1;
goto END;
}

/* Read the matrix A*/

flljbc.4

Mark 24

../F11/f11jac.pdf
../F11/f11jac.pdf
../F11/f11jac.pdf

f11 — Large Scale Linear Systems

for (i

scanf ("$1f%1d%1ds*["\n]",

fl1jbe

= 0; 1 < nnz; i++)

s&ali], &irow[i], &icoll[i]);

/* Read the vector y*/

for (i = 0; 1 < n ; i++)
scanf ("$1f", &ayl[il);
1fi11 = -1;
dtol = 0.0;
dscale = 0.0;
mic = Nag_SparseSym_UnModFact;
pstrat = Nag_SparseSym MarkPiv;
/* Calculate Cholesky factorization using
* nag_sparse_sym_chol_fac (flljac).
*
/
nag_sparse_sym_chol_fac(n, nnz, &a, &la, &irow, &icol, 1fill, dtol, mic,
dscale, pstrat, ipiv, istr, &nnzc, &npivm, &comm,
&fail);

if (fail.code != NE_NOERROR)
{
printf ("Error from nag_sparse_sym_chol_fac (flljac).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
}
/* Check the output value of npivm */
if (npivm != 0)
printf ("Factorization is not complete \n");
else
{
/* Solve linear system involving incomplete Cholesky factorization
*
* TT
* PLDLPZX-=y
*
* using nag_sparse_sym_precon_ichol_solve (f1ljbc).
*/
check = Nag_SparseSym_Check;
nag_sparse_sym_precon_ichol_solve(n, a, la, irow, icol, ipiv, istr,
check, vy, x, &fail);

if

(fail.code != NE_NOERROR)

printf ("Error from nag_sparse_sym _precon_ichol_solve (fl1ljbc).\n%s\n",
fail.message);

exit_status = 2;

goto END;

/* Output results*/
printf (" Solution of linear system \n");
for (i = 0; i < n; i++)

printf("%16.4e\n",

x[1i]);

printf ("\n");

}

END:

NAG_FREE
NAG_FREE
NAG_FREE
NAG_FREE)
NAG_FREE (ipiv) ;
NAG_FREE)

a);
x);
y)i

’

icol

’

irow

(
(
(
(
(
(

NAG_FREE (istr) ;
return exit_status;

Mark 24

flljbc.5

flljbc NAG Library Manual

10.2 Program Data

nag_sparse_sym_precon_ichol_solve (flljbc) Example Program Data
9 :n

23 : nnz
4. 1 1
-1. 2 1

6. 2 2

1. 3 2

2. 3 3

3. 4 4

2. 5 1

4. 5 5

1. 6 3

2. 6 4

6. 6 6
-4. 7 2

1. 7 5
-1. 7 6

6. 7 7
-1. 8 4
-1. 8 6

3. 8 8

1. 9 1

1. 9 5
-1. 9 6

1. 9 8

4. 9 9 ali], irow[i], icol[i], i=0,...,nnz-1
4.10 -2.94 1.41

2.53 4.35 1.29

5.01 0.52 4.57 : y[il, i=0,...,n-1

10.3 Program Results

nag_sparse_sym_precon_ichol_solve (f11ljbc) Example Program Results
Solution of linear system
.0000e-01
.6000e-01
.2000e-01
.7000e-01
.8000e-01
.1000e-01
.3000e-01
.0000e-01
.0000e-01

ONONNDIOE

fl1jbc.6 (last) Mark 24

	f11jbc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	n
	a
	la
	irow
	icol
	ipiv
	istr
	check
	y
	x
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INTERNAL_ERROR
	NE_INVALID_ROWCOL_PIVOT
	NE_INVALID_SCS
	NE_INVALID_SCS_PRECOND
	NE_NOT_STRICTLY_INCREASING

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	9.1 Timing
	9.2 Use of check

	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

