f04 — Simultaneous Linear Equations f04mce

NAG Library Function Document

nag_real cholesky skyline solve (f04mcc)

1 Purpose

nag_real cholesky skyline solve (f04mcc) computes the approximate solution of a system of real linear
equations with multiple right-hand sides, AX = B, where A is a symmetric positive definite variable-
bandwidth matrix, which has previously been factorized by nag_real cholesky skyline (f01mcc). Related
systems may also be solved.

2 Specification

#include <nag.h>
#include <nagf04.h>

void nag_real_cholesky_skyline_solve (Nag_SolveSystem selct, Integer n,
Integer nrhs, const double al[], Integer lal, const double 4[],
const Integer row([], const double b[], Integer tdb, double x[],
Integer tdx, NagError *fail)

3 Description

The normal use of nag_real cholesky skyline solve (f04mcc) is the solution of the systems AX = B,
following a call of nag real cholesky skyline (f0lmcc) to determine the Cholesky factorization
A = LDL" of the symmetric positive definite variable-bandwidth matrix A.

However, the function may be used to solve any one of the following systems of linear algebraic
equations:

LDL'X = B (usual system) (1)
LDX = B (lower triangular system) (2)
DL'X = B (upper triangular system) (3)

LL'X =B (4)
LX = B (unit lower triangular system) (5)
L'X = B (unit upper triangular system) (6)

L denotes a unit lower triangular variable-bandwidth matrix of order n, D a diagonal matrix of order n,
and B a set of right-hand sides.

The matrix L is represented by the elements lying within its envelope, i.e., between the first nonzero of
each row and the diagonal (see Section 10 for an example). The width row[:] of the ith row is the
number of elements between the first nonzero element and the element on the diagonal inclusive.

4 References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation Il, Linear Algebra Springer—
Verlag

Mark 24 f04mcc. 1

../F01/f01mcc.pdf
../F01/f01mcc.pdf

f04mcc NAG Library Manual

5

1:

Arguments

selct — Nag SolveSystem Input
On entry: selet must specify the type of system to be solved, as follows:

if selet = Nag_ LDLTX: solve LDL'* = B;

if selet = Nag_LDX: solve LDX = B;

if selet = Nag_ DLTX: solve DLTX = B;

if selet = Nag LLTX: solve LL'X = B;

if selet = Nag LX: solve LX = B;

if selet = Nag_ LTX: solve LTX = B.
Constraint: selct = Nag LDLTX, Nag LDX, Nag DLTX, Nag LLTX, Nag LX or Nag LTX.

n — Integer Input
On entry: n, the order of the matrix L.

Constraint: m > 1.

nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 1.

alflal] — const double Input
On entry: the elements within the envelope of the lower triangular matrix L, taken in row by row
order, as returned by nag real cholesky skyline (f01mcc). The unit diagonal elements of L must
be stored explicitly.

lal — Integer Input
On entry: the dimension of the array al.

Constraint: 1al > row[0] + row[l] + - - - + row[n — 1].

d[n] — const double Input
On entry: the diagonal elements of the diagonal matrix D. d is not referenced if
selct = Nag LLTX, Nag LX or Nag LTX

row[n| — const Integer Input

On entry: row[i] must contain the width of row ¢ of L, i.e., the number of elements between the
first (left-most) nonzero element and the element on the diagonal, inclusive.

Constraint: 1 <rowl[i] <i+ 1 fori=0,1,...,n— L

b[n x tdb] — const double Input
Note: the (7, j)th element of the matrix B is stored in b[(i — 1) x tdb + j — 1].
On entry: the n by r right-hand side matrix B. See also Section 9.

tdb — Integer Input
On entry: the stride separating matrix column elements in the array b.

Constraint: tdb > nrhs.

f04mcec.2 Mark 24

../F01/f01mcc.pdf

f04 — Simultaneous Linear Equations f04mce

10: x[n x tdx] — double Output
Note: the (7, 7)th element of the matrix X is stored in x[(i — 1) x tdx + j — 1].

On exit: the n by r solution matrix X. See also Section 9.

11: tdx — Integer Input
On entry: the stride separating matrix column elements in the array x.

Constraint. tdx > nrhs.

12: fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_2 INT_ARG_GT

On entry, row[i] = (value) while i = (value). These arguments must satisfy row[i] < i+ 1.

NE_2 INT_ARG_LT

On entry, lal = (value) while row[0] + - - - + row[n — 1] = (value). These arguments must satisfy
lal > row[0] + - - - + row[n — 1].

On entry, tdb = (value) while nrhs = (value). These arguments must satisfy tdb > nrhs.

On entry, tdx = (value) while nrhs = (value). These arguments must satisfy tdx > nrhs.

NE_BAD PARAM

On entry, argument selct had an illegal value.

NE_INT_ARG_LT

On entry, n = (value).
Constraint: n > 1.

On entry, nrhs = (value).
Constraint: nrhs > 1.

On entry, row[(value)] must not be less than 1: row[(value)] = (value).

NE_NOT_UNIT_DIAG

The lower triangular matrix L has at least one diagonal element which is not equal to unity. The
first non-unit element has been located in the array al[(value)].

NE_ZERO DIAG

The diagonal matrix D is singular as it has at least one zero element. The first zero element has
been located in the array d[(value)).

7 Accuracy

The usual backward error analysis of the solution of triangular system applies: each computed solution
vector is exact for slightly perturbed matrices L and D, as appropriate (see pages 25-27 and 54-55 of
Wilkinson and Reinsch (1971)).

8 Parallelism and Performance

nag real cholesky skyline solve (f04mcc) is not threaded by NAG in any implementation.

Mark 24 f04mcc. 3

../GENINT/essint.pdf
../GENINT/essint.pdf

f04mcec NAG Library Manual

nag_real cholesky skyline solve (f04mcc) makes calls to BLAS and/or LAPACK routines, which may
be threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the Users’ Note for your implementation for any additional implementation-specific
information.

9 Further Comments

The time taken by nag real cholesky skyline solve (f04mcc) is approximately proportional to pr, where
p =row[0] + row[l] +--- +rown — 1].

The function may be called with the same actual array supplied for the arguments b and x, in which case
the solution matrix will overwrite the right-hand side matrix.

10 Example
To solve the system of equations AX = B, where
1 2 0 0 5 0 6 -—10
2 5 3 0 14 0 15 =21
10 3 13 0 18 0 11 =3
A=10 0 016 8 24| ™ B=| o x
5 14 18 8 55 17 51 -39
0 0 0 24 17 77 46 67

Here A is symmetric and positive definite and must first be factorized by nag real cholesky skyline
(f01mcc).

10.1 Program Text

/* nag_real_cholesky_skyline_solve (fO4mcc) Example Program.
Copyright 1996 Numerical Algorithms Group.

Mark 4, 1996.
Mark 8 revised, 2004.

#include <nag.h>
#include <math.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagf0l.h>
#include <nagf04.h>

#define B(I, J) b[(I) *tdb + J]
#define X(I, J) x[(I) *tdx + J]

int main(void)

{
Integer exit_status = 0, i, k, k1, k2, lal, n, nrhs, *row = 0, tdb,
tdx;
Nag_SolveSystem select;
double *a =0, *al = 0, *b =0, *d = 0, *x = 0;
NagError fail;

INIT _FAIL(fail);

printf (
"nag_real_cholesky _skyline_solve (fO4mcc) Example Program Results\n");
/* Skip heading in data file */
scanf ("s*["\nl");
scanf ("%14d", &n);
if (n >= 1)
{

f04mcc.4 Mark 24

../F01/f01mcc.pdf
../F01/f01mcc.pdf

f04 — Simultaneous Linear Equations

if (!(row = NAG_ALLOC(n, Integer)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

else

{
printf("Invalid n.\n");

exit_status = 1;
return exit_status;

for (i = 0; 1 < n; ++1i)

scanf ("%1d", &rowl[il);
lal += rowl[i];

if (!(a = NAG_ALLOC(lal, double)) ||
NAG_ALLOC(lal, double)))

@
=
I

printf("Allocation failure\n");
exit_status = -1;
goto END;

= 0; 1 < n; ++1)

k1l = k2;

= k2 + rowl[il;

for (k = k1; k < k2; ++k)
scanf ("s1f", &alkl]);

=~
N
|

}
scanf ("%1d4d", &nrhs);
if (nrhs >= 1)
{
if (! (b = NAG_ALLOC(n*nrhs, double)) ||
! (d = NAG_ALLOC(n, double)) ||
|

(x NAG_ALLOC (n*nrhs, double)))

printf("Allocation failure\n");
exit_status = -1;
goto END;

tdb = nrhs;
tdx = nrhs;
3
else
{
printf("Invalid nrhs.\n");
exit_status = 1;
return exit_status;
}
for (i = 0; 1 < n; ++1)
for (k = 0; k < nrhs; ++k)
scanf ("$1f", &B(i, k));
/* nag_real_cholesky_skyline (fOlmcc).
* LDL"T factorization of real symmetric positive-definite
* variable-bandwidth (skyline) matrix

*/
nag_real_cholesky_skyline(n, a, lal, row, al, d, &fail);
if (fail.code != NE_NOERROR)
{

printf ("Error from nag_real cholesky_ skyline (f£0Olmcc).\n%s\n",
fail.message);

exit_status = 1;

goto END;

}
select = Nag_LDLTX;

Mark 24

f04mcc

f04mece.5

f04mcec NAG Library Manual

/* nag_real_cholesky_skyline_solve (fO4mcc).
* Approximate solution of real symmetric positive-definite
* variable-bandwidth simultaneous linear equations
* (coefficient matrix already factorized by
* nag_real cholesky_skyline (£0lmcc))
*
/
nag_real_cholesky_skyline_solve(select, n, nrhs, al, lal, 4, row, b, tdb,
x, tdx, &fail);
if (fail.code != NE_NOERROR)
{
printf (
"Error from nag_real_cholesky_skyline_solve (f04mcc) .\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
¥
printf ("\n Solution\n");
for (i = 0; i < n; ++1)
{
for (k = 0; k < nrhs; ++k)
printf("%9.3f", X(i, k));
printf ("\n");
}
END:
NAG_FREE (r
NAG_FREE (b
NAG_FREE (d
NAG_FREE (x
NAG_FREE (a) ;
NAG_FREE (al) ;
return exit_status;

10.2 Program Data

nag_real_cholesky_skyline_solve (fO4mcc) Example Program Data

12 2 1 5 3
1.0
2.0 5.0
3.0 13.0
16.0
5.0 14.0 18.0 8.0 55.0
24.0 17.0 77.0
2
6.0 -10.0
15.0 -21.0
11.0 -=3.0
0.0 24.0
51.0 =-39.0
46.0 67.0

10.3 Program Results

nag_real_cholesky_skyline_solve (fO4mcc) Example Program Results

Solution
-3.000 4.000
2.000 -2.000
-1.000 3.000
-2.000 1.000
1.000 -2.000
1.000 1.000

f04mcc.6 (last) Mark 24

	f04mcc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Wilkinson and Reinsch (1971)

	5 Arguments
	selct
	n
	nrhs
	al
	lal
	d
	row
	b
	tdb
	x
	tdx
	fail

	6 Error Indicators and Warnings
	NE_2_INT_ARG_GT
	NE_2_INT_ARG_LT
	NE_BAD_PARAM
	NE_INT_ARG_LT
	NE_NOT_UNIT_DIAG
	NE_ZERO_DIAG

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

