
NAG Library Function Document

nag_opt_one_var_no_deriv (e04abc)

1 Purpose

nag_opt_one_var_no_deriv (e04abc) searches for a minimum, in a given finite interval, of a continuous
function of a single variable, using function values only. The method (based on quadratic interpolation)
is intended for functions which have a continuous first derivative (although it will usually work if the
derivative has occasional discontinuities).

2 Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_one_var_no_deriv (

void (*funct)(double xc, double *fc, Nag_Comm *comm),

double e1, double e2, double *a, double *b, Integer max_fun, double *x,
double *f, Nag_Comm *comm, NagError *fail)

3 Description

nag_opt_one_var_no_deriv (e04abc) is applicable to problems of the form:

Minimize F xð Þ subject to a � x � b:

It normally computes a sequence of x values which tend in the limit to a minimum of F xð Þ subject to
the given bounds. It also progressively reduces the interval a; b½ � in which the minimum is known to lie.
It uses the safeguarded quadratic-interpolation method described in Gill and Murray (1973).

You must supply a function funct to evaluate F xð Þ. The arguments e1 and e2 together specify the
accuracy

Tol xð Þ ¼ e1� xj j þ e2

to which the position of the minimum is required. Note that funct is never called at any point which is
closer than Tol xð Þ to a previous point.

If the original interval a; b½ � contains more than one minimum, nag_opt_one_var_no_deriv (e04abc) will
normally find one of the minima.

4 References

Gill P E and Murray W (1973) Safeguarded steplength algorithms for optimization using descent
methods NPL Report NAC 37 National Physical Laboratory

5 Arguments

1: funct – function, supplied by the user External Function

funct must calculate the value of F xð Þ at any point x in a; b½ �.

The specification of funct is:

void funct (double xc, double *fc, Nag_Comm *comm)

1: xc – double Input

On entry: x, the point at which the value of F xð Þ is required.

e04 – Minimizing or Maximizing a Function e04abc

Mark 24 e04abc.1

2: fc – double * Output

On exit: the value of the function F at the current point x.

3: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to funct.

first – Nag_Boolean Input

On entry: will be set to Nag_TRUE on the first call to funct and Nag_FALSE for
all subsequent calls.

nf – Integer Input

On entry: the number of calls made to funct so far.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void * and char

* otherwise. Before calling nag_opt_one_var_no_deriv (e04abc) these pointers
may be allocated memory and initialized with various quantities for use by funct
when called from nag_opt_one_var_no_deriv (e04abc).

Note: funct should be tested separately before being used in conjunction with
nag_opt_one_var_no_deriv (e04abc).

2: e1 – double Input

On entry: the relative accuracy to which the position of a minimum is required. (Note that since e1
is a relative tolerance, the scaling of x is automatically taken into account.)

It is recommended that e1 should be no smaller than 2�, and preferably not much less than
ffiffi

�
p

,
where � is the machine precision.

If e1 is set to a value less than �, its value is ignored and the default value of
ffiffi

�
p

is used instead.
In particular, you may set e1 ¼ 0:0 to ensure that the default value is used.

3: e2 – double Input

On entry: the absolute accuracy to which the position of a minimum is required. It is
recommended that e2 should be no smaller than 2�.

If e2 is set to a value less than �, its value is ignored and the default value of
ffiffi

�
p

is used instead.
In particular, you may set e2 ¼ 0:0 to ensure that the default value is used.

4: a – double * Input/Output

On entry: the lower bound a of the interval containing a minimum.

On exit: an improved lower bound on the position of the minimum.

5: b – double * Input/Output

On entry: the upper bound b of the interval containing a minimum.

On exit: an improved upper bound on the position of the minimum.

Constraint: b > aþ e2.

Note that the value e2 ¼
ffiffi

�
p

applies here if e2 < � on entry to nag_opt_one_var_no_deriv
(e04abc).

e04abc NAG Library Manual

e04abc.2 Mark 24

6: max_fun – Integer Input

On entry: the maximum number of function evaluations (calls to funct) which you are prepared to
allow.

The number of evaluations actually performed by nag_opt_one_var_no_deriv (e04abc) may be
determined by supplying a non-NULL argument comm (see below) and examining the structure
member comm!nf on exit.

Constraint: max fun � 3.

(Few problems will require more than 30 function evaluations.)

7: x – double * Output

On exit: the estimated position of the minimum.

8: f – double * Output

On exit: the value of F at the final point x.

9: comm – Nag_Comm * Input/Output

Note: comm is a NAG defined type (see Section 3.2.1.1 in the Essential Introduction).

On entry/exit: structure containing pointers for communication to user-supplied functions; see the
above description of funct for details. The number of times the function funct was called is
returned in the member comm!nf.

If you do not need to make use of this communication feature, the null pointer NAGCOMM_NULL

may be used in the call to nag_opt_one_var_no_deriv (e04abc); comm will then be declared
internally for use in calls to user-supplied functions.

10: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_2_REAL_ARG_GE

On entry, aþ e2 ¼ valueh i while b ¼ valueh i. These arguments must satisfy aþ e2 < b.

NE_INT_ARG_LT

On entry, max_fun must not be less than 3: max fun ¼ valueh i.

NW_MAX_FUN

The maximum number of function calls, valueh i, have been performed. This may have happened
simply because max_fun was set too small for a particular problem, or may be due to a mistake in
the user-supplied function, funct. If no mistake can be found in funct, restart
nag_opt_one_var_no_deriv (e04abc) (preferably with the values of a and b given on exit from the
previous call to nag_opt_one_var_no_deriv (e04abc)).

7 Accuracy

If F xð Þ is �-unimodal for some � < Tol xð Þ, where Tol xð Þ ¼ e1� xj j þ e2, then, on exit, x approximates
the minimum of F xð Þ in the original interval a; b½ � with an error less than 3� Tol xð Þ.

8 Parallelism and Performance

Not applicable.

e04 – Minimizing or Maximizing a Function e04abc

Mark 24 e04abc.3

../GENINT/essint.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf

9 Further Comments

Timing depends on the behaviour of F xð Þ, the accuracy demanded, and the length of the interval a; b½ �.
Unless F xð Þ can be evaluated very quickly, the run time will usually be dominated by the time spent in
funct.

If F xð Þ has more than one minimum in the original interval a; b½ �, nag_opt_one_var_no_deriv (e04abc)
will determine an approximation x (and improved bounds a and b) for one of the minima.

If nag_opt_one_var_no_deriv (e04abc) finds an x such that F x� �1ð Þ > F xð Þ < F xþ �2ð Þ for some
�1; �2 � Tol xð Þ, the interval x� �1; xþ �2½ � will be regarded as containing a minimum, even if F xð Þ is
less than F x� �1ð Þ and F xþ �2ð Þ only due to rounding errors in the user-supplied function. Therefore
funct should be programmed to calculate F xð Þ as accurately as possible, so that
nag_opt_one_var_no_deriv (e04abc) will not be liable to find a spurious minimum.

10 Example

A sketch of the function

F xð Þ ¼ sinx

x

shows that it has a minimum somewhere in the range 3:5; 5:0½ �. The example program below shows how
nag_opt_one_var_no_deriv (e04abc) can be used to obtain a good approximation to the position of a
minimum.

10.1 Program Text

/* nag_opt_one_var_no_deriv (e04abc) Example Program.
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
* Mark 7 revised, 2001.
* Mark 8 revised, 2004.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nage04.h>

#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL funct(double xc, double *fc, Nag_Comm *comm);
#ifdef __cplusplus
}
#endif

static void NAG_CALL funct(double xc, double *fc, Nag_Comm *comm)
{

if (comm->user[0] == -1.0)
{

printf("(User-supplied callback funct, first invocation.)\n");
comm->user[0] = 0.0;

}
*fc = sin(xc) / xc;

}
/* funct */

int main(void)
{

static double ruser[1] = {-1.0};
Integer exit_status = 0, max_fun;

e04abc NAG Library Manual

e04abc.4 Mark 24

NagError fail;
Nag_Comm comm;
double a, b, e1, e2, f, x;

INIT_FAIL(fail);

printf(
"nag_opt_one_var_no_deriv (e04abc) Example Program Results\n\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

/* e1 and e2 are set to zero so that nag_opt_one_var_no_deriv (e04abc) will
* reset them to their default values.
*/

e1 = 0.0;
e2 = 0.0;
/* The minimum is known to lie in the range (3.5, 5.0) */
a = 3.5;
b = 5.0;
/* Allow 30 calls of funct */
max_fun = 30;
/* nag_opt_one_var_no_deriv (e04abc).
* Minimizes a function of one variable, using function values only.
*/

nag_opt_one_var_no_deriv(funct, e1, e2, &a, &b, max_fun, &x, &f, &comm,
&fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_opt_one_var_no_deriv (e04abc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

printf("The minimum lies in the interval %7.5f to %7.5f.\n", a, b);
printf("Its estimated position is %7.5f,\n", x);
printf("where the function value is %13.4e.\n", f);
printf("%1ld function evaluations were required.\n", comm.nf);

END:
return exit_status;

}

10.2 Program Data

None.

10.3 Program Results

nag_opt_one_var_no_deriv (e04abc) Example Program Results

(User-supplied callback funct, first invocation.)
The minimum lies in the interval 4.49341 to 4.49341.
Its estimated position is 4.49341,
where the function value is -2.1723e-01.
10 function evaluations were required.

e04 – Minimizing or Maximizing a Function e04abc

Mark 24 e04abc.5 (last)

	e04abc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Gill and Murray (1973)

	5 Arguments
	funct
	xc
	fc
	comm
	first
	nf
	user
	iuser
	p

	e1
	e2
	a
	b
	max_fun
	x
	f
	comm
	fail

	6 Error Indicators and Warnings
	NE_2_REAL_ARG_GE
	NE_INT_ARG_LT
	NW_MAX_FUN

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

