NAG Library Function Document nag 2d spline ts eval rect (e02jfc)

1 Purpose

nag_2d_spline_ts_eval_rect (e02jfc) calculates a mesh of values of a spline computed by nag 2d spline fit ts scat (e02jdc).

2 Specification

3 Description

nag_2d_spline_ts_eval_rect (e02jfc) calculates values on a rectangular mesh of a bivariate spline computed by nag_2d_spline_fit_ts_scat (e02jdc). The points in the mesh are defined by x coordinates (x_i) , for $i = 1, 2, \ldots, n_x$, and y coordinates (y_j) , for $j = 1, 2, \ldots, n_y$. This function is derived from the TSFIT package of O. Davydov and F. Zeilfelder.

4 References

Davydov O and Zeilfelder F (2004) Scattered data fitting by direct extension of local polynomials to bivariate splines *Advances in Comp. Math.* **21** 223–271

Farin G and Hansford D (2000) The Essentials of CAGD Natic, MA: A K Peters, Ltd.

5 Arguments

1: **nxeval** – Integer

Input

On entry: n_x , the number of values in the x direction forming the mesh on which the spline is to be evaluated.

Constraint: $\mathbf{nxeval} \geq 1$.

2: **nyeval** – Integer

Input

On entry: n_y , the number of values in the y direction forming the mesh on which the spline is to be evaluated.

Constraint: $nyeval \ge 1$.

3: **xevalm**[**nxeval**] – const double

Input

On entry: the (x_i) values forming the mesh on which the spline is to be evaluated.

Constraint: for all i, $\mathbf{xevalm}[i-1]$ must lie inside, or on the boundary of, the spline's bounding box as determined by $nag_2d_spline_fit_ts_scat$ (e02jdc).

Mark 24 e02jfc.1

e02jfc NAG Library Manual

4: **yevalm**[**nyeval**] – const double

Input

On entry: the (y_i) values forming the mesh on which the spline is to be evaluated.

Constraint: for all j, **yevalm**[j-1] must lie inside, or on the boundary of, the spline's bounding box as determined by nag 2d spline fit to scat (e02jdc).

5: $\mathbf{coefs}[dim] - \mathbf{const} \ \mathbf{double}$

Communication Array

Note: the dimension, *dim*, of this array is dictated by the requirements of associated functions that must have been previously called. This array MUST be the same array passed as argument **coefs** in the previous call to nag 2d spline fit ts scat (e02jdc).

On entry: the computed spline coefficients as output from nag 2d spline fit ts scat (e02jdc).

6: $fevalm[nxeval \times nyeval] - double$

Output

Note: the (i, j)th element of the matrix is stored in $\mathbf{fevalm}[(j-1) \times \mathbf{nxeval} + i - 1]$.

On exit: if fail.code = NE_NOERROR on exit fevalm $[(j-1) \times nxeval + i - 1]$ contains the computed spline value at (x_i, y_i) .

7: iopts[dim] - const Integer

Communication Array

Note: the dimension, *dim*, of this array is dictated by the requirements of associated functions that must have been previously called. This array MUST be the same array passed as argument **iopts** in the previous call to nag_fit_opt_set (e02zkc).

On entry: the contents of the array MUST NOT have been modified either directly or indirectly, by a call to nag_fit_opt_set (e02zkc), between calls to nag_2d_spline_fit_ts_scat (e02jdc) and nag_2d_spline_ts_eval_rect (e02jfc).

8: opts[dim] - const double

Communication Array

Note: the dimension, *dim*, of this array is dictated by the requirements of associated functions that must have been previously called. This array MUST be the same array passed as argument **opts** in the previous call to nag_fit_opt_set (e02zkc).

On entry: the contents of the array MUST NOT have been modified either directly or indirectly, by a call to nag_fit_opt_set (e02zkc), between calls to nag_2d_spline_fit_ts_scat (e02jdc) and nag 2d spline ts eval rect (e02jfc).

9: **fail** – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE ALLOC FAIL

Dynamic memory allocation failed.

NE BAD PARAM

On entry, argument (value) had an illegal value.

NE_INITIALIZATION

Option arrays are not initialized or are corrupted.

NE_INT

```
On entry, \mathbf{nxeval} = \langle value \rangle.
Constraint: \mathbf{nxeval} \geq 1.
```

e02jfc.2 Mark 24

```
On entry, nyeval = \langle value \rangle.
Constraint: nyeval \geq 1.
```

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

NE_INVALID_SPLINE

The fitting routine has not been called, or the array of coefficients has been corrupted.

NE POINT OUTSIDE RECT

```
On entry, \mathbf{xevalm}[\langle value \rangle] = \langle value \rangle was outside the bounding box. Constraint: \langle value \rangle \leq \mathbf{xevalm}[i-1] \leq \langle value \rangle for all i.

On entry, \mathbf{yevalm}[\langle value \rangle] = \langle value \rangle was outside the bounding box. Constraint: \langle value \rangle \leq \mathbf{yevalm}[j-1] \leq \langle value \rangle for all j.
```

7 Accuracy

nag_2d_spline_ts_eval_rect (e02jfc) uses the de Casteljau algorithm and thus is numerically stable. See Farin and Hansford (2000) for details.

8 Parallelism and Performance

nag_2d_spline_ts_eval_rect (e02jfc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

Please consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

A real array of length O(1) is dynamically allocated by each invocation of nag_2d_spline_ts_eval_rect (e02jfc).

10 Example

See Section 10 in nag 2d spline fit ts scat (e02jdc).

Mark 24 e02jfc.3 (last)