e02 — Curve and Surface Fitting e02bdc

NAG Library Function Document
nag_1d_spline_intg (e02bdc)

1 Purpose

nag 1d spline intg (e02bdc) computes the definite integral of a cubic spline from its B-spline
representation.

2 Specification

#include <nag.h>
#include <nage02.h>

void nag_1d_spline_intg (Nag_Spline *spline, double *integral,
NagError *fail)

3 Description

nag_1d spline intg (¢02bdc) computes the definite integral of the cubic spline s(x) between the limits
x = a and x = b, where a and b are respectively the lower and upper limits of the range over which s(z)
is defined. It is assumed that s(z) is represented in terms of its B-spline coefficients ¢;, for
1=1,2,...,m+3 and (augmented) ordered knot set \;,, for i=1,2,... 7+ 7, with A\, =a, for
i=1,2,3,4and \; =0, for i=n+4,...,n+7, (see nag_ld_spline_fit_knots (e02bac)), i.e.,

s(x) = ZciNi(x).

Here ¢ = n + 3, n is the number of intervals of the spline and N;(z) denotes the normalized B-spline of
degree 3 (order 4) defined upon the knots A\;, A\;iq, ..., Aii4a.

The method employed uses the formula given in Section 3 of Cox (1975).

nag 1d spline intg (e02bdc) can be used to determine the definite integrals of cubic spline fits and
interpolants produced by nag 1d_spline interpolant (eOlbac), nag 1d spline fit knots (e02bac) and
nag 1d spline fit (e02bec).

4 References
Cox M G (1975) An algorithm for spline interpolation J. Inst. Math. Appl. 15 95-108

5 Arguments
1: spline — Nag_ Spline *

Pointer to structure of type Nag Spline with the following members:

n — Integer Input

On entry: n + 7, where 71 is the number of intervals of the spline (which is one greater than
the number of interior knots, i.e., the knots strictly within the range a to b) over which the
spline is defined.

Constraint: spline—n > 8.

Mark 24 e02bdc.1

../E02/e02bac.pdf
../E01/e01bac.pdf
../E02/e02bac.pdf
../E02/e02bec.pdf

e02bdc NAG Library Manual

lamda — double * Input

On entry: a pointer to which memory of size spline—n must be allocated.
spline—lamda[j — 1] must be set to the value of the jth member of the complete set of
knots, \; for j=1,2,...,n+7.

Constraint: the \; must be in nondecreasing order with
spline—lamda[spline—n — 4] > spline—lamdal[3] and satisfy

spline—lamda[0] = spline—lamda[l| = spline—lamda[2] = spline—lamda|[3]
and

spline—lamda|spline—n — 4] = spline—lamda|spline—n — 3] =
spline—lamdalspline—n — 2] = spline—lamda]spline—n — 1]

¢ — double * Input
On entry: a pointer to which memory of size spline—n — 4 must be allocated. spline—c
holds the coefficient ¢; of the B-spline N;(x), for i =1,2,...,1+ 3.
2: integral — double * Output
On exit: the value of the definite integral of s(z) between the limits z = a and x = b, where
a =)\4 and b = >\ﬁ+4.
3: fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_INT_ARG_LT

On entry, spline—n must not be less than 8: spline—n = (value).

NE_KNOTS_CONS

On entry, the knots must satisfy the following constraints:

spline—lamda[spline—n — 4] > spline—lamda[3], spline—lamda[j] > spline—lamda[j — 1], for
j=1,2,...,spline—n — 1, with equality in the cases j = 1,2, 3, spline—n — 3, spline—n — 2
and spline—n — 1.

7 Accuracy

The rounding errors are such that the computed value of the integral is exact for a slightly perturbed set
of B-spline coefficients c¢; differing in a relative sense from those supplied by no more than
2.2 x (n+ 3) X machine precision.

8 Parallelism and Performance

Not applicable.

9 Further Comments

Under normal usage, the call to nag 1d spline intg (e02bdc) will follow a call to
nag 1d spline interpolant (eOlbac), nag 1d spline fit knots (e02bac) or nag 1d spline fit (e02bec).
In that case, the structure spline will have been set up correctly for input to nag 1d spline intg
(e02bdc).

The time taken is approximately proportional to 7 + 7.

e02bdc.2 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf
../E01/e01bac.pdf
../E02/e02bac.pdf
../E02/e02bec.pdf

e02 — Curve and Surface Fitting e02bdc

10 Example

This example determines the definite integral over the interval 0 < x < 6 of a cubic spline having 6
interior knots at the positions A = 1, 3, 3, 3, 4, 4, the 8 additional knots 0, 0, 0, 0, 6, 6, 6, 6, and the 10
B-spline coefficients 10, 12, 13, 15, 22, 26, 24, 18, 14, 12.

The input data items (using the notation of Section 5) comprise the following values in the order
indicated:

n+7

spline.lamda[j — 1],
for j=1,2,..., spline.n
spline.c[j — 1], for j=1,2,...,spline.n — 3

The example program is written in a general form that will enable the definite integral of a cubic spline
having an arbitrary number of knots to be computed. Any number of datasets may be supplied. The only
changes required to the program relate to the size of spline.lamda and the storage allocated to spline.c
within the structure spline.

10.1 Program Text
/* nag_1d_spline_intg (e02bdc) Example Program.
Copyright 1991 Numerical Algorithms Group.

Mark 2, 1991.
Mark 8 revised, 2004.

* X ¥k %

*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage02.h>

int main(void)
{
Integer exit_status = 0, j;
NagError fail;
Nag_Spline spline;
double integral;

INIT_FAIL(fail);

/* Initialise spline */
spline.lamda = O;
spline.c = 0;

printf("nag_1d_spline_intg (e02bdc) Example Program Results\n");
scanf ("$*[*\n]"); /* Skip heading in data file */
while (scanf("%1d", &(spline.n)) != EOF)
{
if (spline.n > 0)
{
if (!(spline.c = NAG_ALLOC(spline.n, double)) ||
! (spline.lamda = NAG_ALLOC(spline.n, double)))
{
printf("Storage allocation failed. Reduce the
"size of spline.n\n");

exit_status = 1;
goto END;
3
}
else
{
printf("spline.n is out of range : spline.n = %1d\n",

spline.n);

Mark 24 e02bdc.3

e02bdc NAG Library Manual

exit_status = 1;
goto END;
}
for (j = 0; j < spline.n; j++)
scanf ("%1f", &(spline.lamdaljl));
for (j = 0; j < spline.n-3; j++)
scanf ("$1f", &(spline.c[j]));
/* nag_ld_spline_intg (e0O2bdc).
* Evaluation of fitted cubic spline, definite integral

0

*/
nag_1d_spline_intg(&spline, &integral, &fail);
if (fail.code != NE_NOERROR)
{

printf ("Error from nag_ld_spline_intg (e0O2bdc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
¥
printf("Definite integral = %12.3e\n", integral);
NAG_FREE (spline.c);
NAG_FREE (spline.lamda) ;
¥
END:
return exit_status;

3

10.2 Program Data

nag_1d_spline_intg (e02bdc) Example Program Data

14
0.0 0.0 0.0 0.0 1.0 3.0 3.0 3.0
4.0 4.0 6.0 6.0 6.0 6.0
10.0 12.0 13.0 15.0 22.0 26.0 24.0 18.0
14.0 12.0

10.3 Program Results

nag_1d_spline_intg (e02bdc) Example Program Results
Definite integral = 1.000e+02

e02bdc.4 (last) Mark 24

	e02bdc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Cox (1975)

	5 Arguments
	spline
	n
	lamda
	c

	integral
	fail

	6 Error Indicators and Warnings
	NE_INT_ARG_LT
	NE_KNOTS_CONS

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

