e02 — Curve and Surface Fitting e02bdc

NAG Library Function Document
nag_1d_spline_intg (e02bdc)

1 Purpose

nag 1d spline intg (e02bdc) computes the definite integral of a cubic spline from its B-spline
representation.

2 Specification

#include <nag.h>
#include <nage02.h>

void nag_1d_spline_intg (Nag_Spline *spline, double *integral,
NagError *fail)

3 Description

nag_1d spline intg (¢02bdc) computes the definite integral of the cubic spline s(x) between the limits
x = a and x = b, where a and b are respectively the lower and upper limits of the range over which s(z)
is defined. It is assumed that s(z) is represented in terms of its B-spline coefficients ¢;, for
1=1,2,...,m+3 and (augmented) ordered knot set \;,, for i=1,2,... 7+ 7, with A\, =a, for
i=1,2,3,4and \; =0, for i=n+4,...,n+7, (see nag_ld_spline_fit_knots (e02bac)), i.e.,

s(x) = ZciNi(x).

Here ¢ = n + 3, n is the number of intervals of the spline and N;(z) denotes the normalized B-spline of
degree 3 (order 4) defined upon the knots A\;, A\;iq, ..., Aii4a.

The method employed uses the formula given in Section 3 of Cox (1975).

nag 1d spline intg (e02bdc) can be used to determine the definite integrals of cubic spline fits and
interpolants produced by nag 1d_spline interpolant (eOlbac), nag 1d spline fit knots (e02bac) and
nag 1d spline fit (e02bec).

4  References
Cox M G (1975) An algorithm for spline interpolation J. Inst. Math. Appl. 15 95-108

5  Arguments
1: spline — Nag_ Spline *

Pointer to structure of type Nag Spline with the following members:

n — Integer Input

On entry: n + 7, where 71 is the number of intervals of the spline (which is one greater than
the number of interior knots, i.e., the knots strictly within the range a to b) over which the
spline is defined.

Constraint: spline—n > 8.
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lamda — double * Input

On entry: a pointer to which memory of size spline—n must be allocated.
spline—lamda[j — 1] must be set to the value of the jth member of the complete set of
knots, \; for j=1,2,...,n+7.

Constraint: the \; must be in nondecreasing order with
spline—lamda[spline—n — 4] > spline—lamdal[3] and satisfy

spline—lamda[0] = spline—lamda[l| = spline—lamda[2] = spline—lamda|[3]
and

spline—lamda|spline—n — 4] = spline—lamda|spline—n — 3] =
spline—lamdalspline—n — 2] = spline—lamda]spline—n — 1]

¢ — double * Input
On entry: a pointer to which memory of size spline—n — 4 must be allocated. spline—c
holds the coefficient ¢; of the B-spline N;(x), for i =1,2,...,1+ 3.
2: integral — double * Output
On exit: the value of the definite integral of s(z) between the limits z = a and x = b, where
a = )\4 and b = >\ﬁ+4.
3: fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

NE_INT_ARG_LT

On entry, spline—n must not be less than 8: spline—n = (value).

NE_KNOTS_CONS

On entry, the knots must satisfy the following constraints:

spline—lamda[spline—n — 4] > spline—lamda[3], spline—lamda[j] > spline—lamda[j — 1], for
j=1,2,...,spline—n — 1, with equality in the cases j = 1,2, 3, spline—n — 3, spline—n — 2
and spline—n — 1.

7  Accuracy

The rounding errors are such that the computed value of the integral is exact for a slightly perturbed set
of B-spline coefficients c¢; differing in a relative sense from those supplied by no more than
2.2 x (n+ 3) X machine precision.

8 Parallelism and Performance

Not applicable.

9 Further Comments

Under normal usage, the call to nag 1d spline intg (e02bdc) will follow a call to
nag 1d spline interpolant (eOlbac), nag 1d spline fit knots (e02bac) or nag 1d spline fit (e02bec).
In that case, the structure spline will have been set up correctly for input to nag 1d spline intg
(e02bdc).

The time taken is approximately proportional to 7 + 7.
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10 Example

This example determines the definite integral over the interval 0 < x < 6 of a cubic spline having 6
interior knots at the positions A = 1, 3, 3, 3, 4, 4, the 8 additional knots 0, 0, 0, 0, 6, 6, 6, 6, and the 10
B-spline coefficients 10, 12, 13, 15, 22, 26, 24, 18, 14, 12.

The input data items (using the notation of Section 5) comprise the following values in the order
indicated:

n+7

spline.lamda[j — 1],
for j=1,2,..., spline.n
spline.c[j — 1], for j=1,2,...,spline.n — 3

The example program is written in a general form that will enable the definite integral of a cubic spline
having an arbitrary number of knots to be computed. Any number of datasets may be supplied. The only
changes required to the program relate to the size of spline.lamda and the storage allocated to spline.c
within the structure spline.

10.1 Program Text
/* nag_1d_spline_intg (e02bdc) Example Program.
Copyright 1991 Numerical Algorithms Group.

Mark 2, 1991.
Mark 8 revised, 2004.

* X ¥k %

*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage02.h>

int main(void)
{
Integer exit_status = 0, j;
NagError fail;
Nag_Spline spline;
double integral;

INIT_FAIL(fail);

/* Initialise spline */
spline.lamda = O;
spline.c = 0;

printf("nag_1d_spline_intg (e02bdc) Example Program Results\n");
scanf ("$*[*\n]"); /* Skip heading in data file */
while (scanf("%1d", &(spline.n)) != EOF)
{
if (spline.n > 0)
{
if (!(spline.c = NAG_ALLOC(spline.n, double)) ||
! (spline.lamda = NAG_ALLOC(spline.n, double)))
{
printf("Storage allocation failed. Reduce the
"size of spline.n\n");

exit_status = 1;
goto END;
3
}
else
{
printf("spline.n is out of range : spline.n = %1d\n",

spline.n);
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exit_status = 1;
goto END;
}
for (j = 0; j < spline.n; j++)
scanf ("%1f", &(spline.lamdaljl));
for (j = 0; j < spline.n-3; j++)
scanf ("$1f", &(spline.c[j]));
/* nag_ld_spline_intg (e0O2bdc).
* Evaluation of fitted cubic spline, definite integral

0

*/
nag_1d_spline_intg(&spline, &integral, &fail);
if (fail.code != NE_NOERROR)
{

printf ("Error from nag_ld_spline_intg (e0O2bdc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
¥
printf("Definite integral = %12.3e\n", integral);
NAG_FREE (spline.c);
NAG_FREE (spline.lamda) ;
¥
END:
return exit_status;

3

10.2 Program Data

nag_1d_spline_intg (e02bdc) Example Program Data

14
0.0 0.0 0.0 0.0 1.0 3.0 3.0 3.0
4.0 4.0 6.0 6.0 6.0 6.0
10.0 12.0 13.0 15.0 22.0 26.0 24.0 18.0
14.0 12.0

10.3 Program Results

nag_1d_spline_intg (e02bdc) Example Program Results
Definite integral = 1.000e+02
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