
NAG Library Function Document

nag_1d_spline_deriv (e02bcc)

1 Purpose

nag_1d_spline_deriv (e02bcc) evaluates a cubic spline and its first three derivatives from its B-spline
representation.

2 Specification

#include <nag.h>
#include <nage02.h>

void nag_1d_spline_deriv (Nag_DerivType derivs, double x, double s[],
Nag_Spline *spline, NagError *fail)

3 Description

nag_1d_spline_deriv (e02bcc) evaluates the cubic spline s xð Þ and its first three derivatives at a
prescribed argument x. It is assumed that s xð Þ is represented in terms of its B-spline coefficients ci, for
i ¼ 1; 2; . . . ; �nþ 3 and (augmented) o rde red kno t se t �i, fo r i ¼ 1; 2; . . . ; �nþ 7, (see
nag_1d_spline_fit_knots (e02bac)), i.e.,

s xð Þ ¼
Xq

i¼1

ciNi xð Þ

Here q ¼ �nþ 3, �n is the number of intervals of the spline and Ni xð Þ denotes the normalized B-spline of
degree 3 (order 4) defined upon the knots �i; �iþ1; . . . ; �iþ4. The prescribed argument x must satisfy
�4 � x � ��nþ4.

At a simple knot �i (i.e., one satisfying �i�1 < �i < �iþ1), the third derivative of the spline is in general
discontinuous. At a multiple knot (i.e., two or more knots with the same value), lower derivatives, and
even the spline itself, may be discontinuous. Specifically, at a point x ¼ u where (exactly) r knots
coincide (such a point is termed a knot of multiplicity r), the values of the derivatives of order 4� j, for
j ¼ 1; 2; . . . ; r, are in general discontinuous. (Here 1 � r � 4; r > 4 is not meaningful.) You must specify
whether the value at such a point is required to be the left- or right-hand derivative.

The method employed is based upon:

(i) carrying out a binary search for the knot interval containing the argument x (see Cox (1978)),

(ii) evaluating the nonzero B-splines of orders 1,2,3 and 4 by recurrence (see Cox (1972) and Cox
(1978)),

(iii) computing all derivatives of the B-splines of order 4 by applying a second recurrence to these
computed B-spline values (see de Boor (1972)),

(iv) multiplying the 4th-order B-spline values and their derivative by the appropriate B-spline
coefficients, and summing, to yield the values of s xð Þ and its derivatives.

nag_1d_spline_deriv (e02bcc) can be used to compute the values and derivatives of cubic spline fits and
interpolants produced by nag_1d_spline_fit_knots (e02bac), nag_1d_spline_fit (e02bec) or
nag_1d_spline_interpolant (e01bac).

If only values and not derivatives are required, nag_1d_spline_evaluate (e02bbc) may be used instead of
nag_1d_spline_deriv (e02bcc), which takes about 50% longer than nag_1d_spline_evaluate (e02bbc).

e02 – Curve and Surface Fitting e02bcc

Mark 24 e02bcc.1

../E02/e02bac.pdf
../E02/e02bac.pdf
../E02/e02bec.pdf
../E01/e01bac.pdf
../E02/e02bbc.pdf
../E02/e02bbc.pdf

4 References

Cox M G (1972) The numerical evaluation of B-splines J. Inst. Math. Appl. 10 134–149

Cox M G (1978) The numerical evaluation of a spline from its B-spline representation J. Inst. Math.
Appl. 21 135–143

de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50–62

5 Arguments

1: derivs – Nag_DerivType Input

On entry: derivs, of type Nag_DerivType, specifies whether left- or right-hand values of the spline
and its derivatives are to be computed (see Section 3). Left- or right-hand values are formed
according to whether derivs is equal to Nag LeftDerivs or Nag RightDerivs respectively. If x does
not coincide with a knot, the value of derivs is immaterial. If x ¼ spline!lamda½3�, right-hand
values are computed, and if x ¼ spline!lamda½spline!n� 4�), left-hand values are formed,
regardless of the value of derivs.

Constraint: derivs ¼ Nag LeftDerivs or Nag RightDerivs.

2: x – double Input

On entry: the argument x at which the cubic spline and its derivatives are to be evaluated.

Constraint: spline!lamda½3� � x � spline!lamda½spline!n� 4�.

3: s½4� – double Output

On exit: s½j� contains the value of the jth derivative of the spline at the argument x, for
j ¼ 0; 1; 2; 3. Note that s½0� contains the value of the spline.

4: spline – Nag_Spline *

Pointer to structure of type Nag_Spline with the following members:

n – Integer Input

On entry: �nþ 7, where �n is the number of intervals of the spline (which is one greater than
the number of interior knots, i.e., the knots strictly within the range �4 to ��nþ4 over which
the spline is defined).

Constraint: spline!n � 8.

lamda – double Input

On entry: a pointer to which memory of size spline!n must be allocated.
spline!lamda½j � 1� must be set to the value of the jth member of the complete set of
knots, �j , for j ¼ 1; 2; . . . ; �nþ 7.

Constraint: the �j must be in nondecreasing order with
spline!lamda½spline!n� 4� > spline!lamda½3�.

c – double Input

On entry: a pointer to which memory of size spline!n� 4 must be allocated. spline!c
holds the coefficient ci of the B-spline Ni xð Þ, for i ¼ 1; 2; . . . ; �nþ 3.

Under normal usage, the call to nag_1d_spline_deriv (e02bcc) will follow a call to
nag_1d_spline_fit_knots (e02bac), nag_1d_spline_interpolant (e01bac) or nag_1d_spline_fit
(e02bec). In that case, the structure spline will have been set up correctly for input to
nag_1d_spline_deriv (e02bcc).

5: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

e02bcc NAG Library Manual

e02bcc.2 Mark 24

../E02/e02bac.pdf
../E01/e01bac.pdf
../E02/e02bec.pdf
../E02/e02bec.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf

6 Error Indicators and Warnings

NE_ABSCI_OUTSIDE_KNOT_INTVL

On entry, x must satisfy spline!lamda½3� � x � spline!lamda½spline!n� 4�:
spline!lamda½3� ¼ valueh i, x ¼ valueh i, spline!lamda½ valueh i� ¼ valueh i.

NE_BAD_PARAM

On entry, argument derivs had an illegal value.

NE_INT_ARG_LT

On entry, spline!n must not be less than 8: spline!n ¼ valueh i.

NE_SPLINE_RANGE_INVALID

On entry, the cubic spline range is invalid:
spline!lamda½3� ¼ valueh i while spline!lamda½spline!n� 4� ¼ valueh i.
These must satisfy spline!lamda½3� < spline!lamda½spline!n� 4�.

7 Accuracy

The computed value of s xð Þ has negligible error in most practical situations. Specifically, this value has
an absolute error bounded in modulus by 18� cmax� machine precision, where cmax is the largest in
modulus of cj; cjþ1; cjþ2 and cjþ3, and j is an integer such that �jþ3 � x � �jþ4. If cj; cjþ1; cjþ2 and cjþ3

are all of the same sign, then the computed value of s xð Þ has relative error bounded by 20� machine
precision. For full details see Cox (1978).

No complete error analysis is available for the computation of the derivatives of s xð Þ. However, for most
practical purposes the absolute errors in the computed derivatives should be small.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by this function is approximately linear in log �nþ 7ð Þ.
Note: the function does not test all the conditions on the knots given in the description of spline!lamda
in Section 5, since to do this would result in a computation time approximately linear in �nþ 7 instead of
log �nþ 7ð Þ. All the conditions are tested in nag_1d_spline_fit_knots (e02bac), however, and the knots
returned by nag_1d_spline_interpolant (e01bac) or nag_1d_spline_fit (e02bec) will satisfy the conditions.

10 Example

Compute, at the 7 arguments x ¼ 0, 1, 2, 3, 4, 5, 6, the left- and right-hand values and first 3 derivatives
of the cubic spline defined over the interval 0 � x � 6 having the 6 interior knots x ¼ 1, 3, 3, 3, 4, 4,
the 8 additional knots 0, 0, 0, 0, 6, 6, 6, 6, and the 10 B-spline coefficients 10, 12, 13, 15, 22, 26, 24,
18, 14, 12.

The input data items (using the notation of Section 5) comprise the following values in the order
indicated:

�n m
spline!lamda½j� for j ¼ 0; 1; . . . ; �nþ 6
spline!c½j�, for j ¼ 0; 1; . . . ; �nþ 2
x m values of x

e02 – Curve and Surface Fitting e02bcc

Mark 24 e02bcc.3

../E02/e02bac.pdf
../E01/e01bac.pdf
../E02/e02bec.pdf

The example program is written in a general form that will enable the values and derivatives of a cubic
spline having an arbitrary number of knots to be evaluated at a set of arbitrary points. Any number of
datasets may be supplied.

10.1 Program Text

/* nag_1d_spline_deriv (e02bcc) Example Program.
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
*
* Mark 3 revised, 1994.
* Mark 8 revised, 2004.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage02.h>

int main(void)
{

Integer exit_status = 0, i, j, l, m, ncap, ncap7;
NagError fail;
Nag_DerivType derivs;
Nag_Spline spline;
double s[4], x;

INIT_FAIL(fail);

/* Initialise spline */
spline.lamda = 0;
spline.c = 0;

printf("nag_1d_spline_deriv (e02bcc) Example Program Results\n");
scanf("%*[^\n]"); /* Skip heading in data file */
while (scanf("%ld%ld", &ncap, &m) != EOF)

{
if (m <= 0)

{
printf("Invalid m.\n");
exit_status = 1;
return exit_status;

}
if (ncap > 0)

{
ncap7 = ncap+7;
spline.n = ncap7;
if (!(spline.c = NAG_ALLOC(ncap7, double)) ||

!(spline.lamda = NAG_ALLOC(ncap7, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}

else
{

printf("Invalid ncap.\n");
exit_status = 1;
return exit_status;

}
for (j = 0; j < ncap7; j++)

scanf("%lf", &(spline.lamda[j]));
for (j = 0; j < ncap+3; j++)

scanf("%lf", &(spline.c[j]));
printf(" x Spline 1st deriv "

e02bcc NAG Library Manual

e02bcc.4 Mark 24

"2nd deriv 3rd deriv");
for (i = 1; i <= m; i++)

{
scanf("%lf", &x);
derivs = Nag_LeftDerivs;
for (j = 1; j <= 2; j++)

{
/* nag_1d_spline_deriv (e02bcc).
* Evaluation of fitted cubic spline, function and
* derivatives
*/

nag_1d_spline_deriv(derivs, x, s, &spline, &fail);
if (fail.code != NE_NOERROR)

{
printf(

"Error from nag_1d_spline_deriv (e02bcc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

if (derivs == Nag_LeftDerivs)
{

printf("\n\n%11.4f Left", x);
for (l = 0; l < 4; l++)

printf("%11.4f", s[l]);
}

else
{

printf("\n%11.4f Right", x);
for (l = 0; l < 4; l++)

printf("%11.4f", s[l]);
}

derivs = Nag_RightDerivs;
}

}
printf("\n");

END:
NAG_FREE(spline.c);
NAG_FREE(spline.lamda);

}
return exit_status;

}

10.2 Program Data

nag_1d_spline_deriv (e02bcc) Example Program Data
7 7

0.0 0.0 0.0 0.0 1.0 3.0 3.0 3.0
4.0 4.0 6.0 6.0 6.0 6.0

10.0 12.0 13.0 15.0 22.0 26.0 24.0 18.0
14.0 12.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0

10.3 Program Results

nag_1d_spline_deriv (e02bcc) Example Program Results
x Spline 1st deriv 2nd deriv 3rd deriv

0.0000 Left 10.0000 6.0000 -10.0000 10.6667
0.0000 Right 10.0000 6.0000 -10.0000 10.6667

1.0000 Left 12.7778 1.3333 0.6667 10.6667
1.0000 Right 12.7778 1.3333 0.6667 3.9167

e02 – Curve and Surface Fitting e02bcc

Mark 24 e02bcc.5

2.0000 Left 15.0972 3.9583 4.5833 3.9167
2.0000 Right 15.0972 3.9583 4.5833 3.9167

3.0000 Left 22.0000 10.5000 8.5000 3.9167
3.0000 Right 22.0000 12.0000 -36.0000 36.0000

4.0000 Left 22.0000 -6.0000 0.0000 36.0000
4.0000 Right 22.0000 -6.0000 0.0000 1.5000

5.0000 Left 16.2500 -5.2500 1.5000 1.5000
5.0000 Right 16.2500 -5.2500 1.5000 1.5000

6.0000 Left 12.0000 -3.0000 3.0000 1.5000
6.0000 Right 12.0000 -3.0000 3.0000 1.5000

e02bcc NAG Library Manual

e02bcc.6 (last) Mark 24

	e02bcc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Cox (1972)
	Cox (1978)
	de Boor (1972)

	5 Arguments
	derivs
	x
	s
	spline
	n
	lamda
	c

	fail

	6 Error Indicators and Warnings
	NE_ABSCI_OUTSIDE_KNOT_INTVL
	NE_BAD_PARAM
	NE_INT_ARG_LT
	NE_SPLINE_RANGE_INVALID

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

