
NAG Library Function Document

nag_1d_cheb_fit_constr (e02agc)

1 Purpose

nag_1d_cheb_fit_constr (e02agc) computes constrained weighted least squares polynomial approxima-
tions in Chebyshev series form to an arbitrary set of data points. The values of the approximations and
any number of their derivatives can be specified at selected points.

2 Specification

#include <nag.h>
#include <nage02.h>

void nag_1d_cheb_fit_constr (Nag_OrderType order, Integer m, Integer k,
double xmin, double xmax, const double x[], const double y[],
const double w[], Integer mf, const double xf[], const double yf[],
const Integer p[], double a[], double s[], Integer *n, double resid[],
NagError *fail)

3 Description

nag_1d_cheb_fit_constr (e02agc) determines least squares polynomial approximations of degrees up to k
to the set of data points xr ; yrð Þ with weights wr , for r ¼ 1; 2; . . . ;m. The value of k, the maximum
degree required, is to be prescribed by you. At each of the values xfr , for r ¼ 1; 2; . . . ;mf, of the
independent variable x, the approximations and their derivatives up to order pr are constrained to have

one of the values yfs, for s ¼ 1; 2; . . . ;n, specified by you, where n ¼ mf þ
Xmf
r¼0

pr.

The approximation of degree i has the property that, subject to the imposed constraints, it minimizes �i,
the sum of the squares of the weighted residuals �r , for r ¼ 1; 2; . . . ;m, where

�r ¼ wr yr � fi xrð Þð Þ

and fi xrð Þ is the value of the polynomial approximation of degree i at the rth data point.

Each polynomial is represented in Chebyshev series form with normalized argument �x. This argument
lies in the range �1 to þ1 and is related to the original variable x by the linear transformation

�x ¼ 2x� xmax þ xminð Þ
xmax � xminð Þ

where xmin and xmax , specified by you, are respectively the lower and upper end points of the interval of
x over which the polynomials are to be defined.

The polynomial approximation of degree i can be written as

1
2ai;0 þ ai;1T1 �xð Þ þ � � � þ aijTj �xð Þ þ � � � þ aiiTi �xð Þ

where Tj �xð Þ is the Chebyshev polynomial of the first kind of degree j with argument �x. For
i ¼ n; n þ 1; . . . ; k, the function produces the values of the coefficients aij , for j ¼ 0; 1; . . . ; i, together
with the value of the root mean square residual,

Si ¼
ffi

�i
m0 þ n � i� 1ð Þ

r
;

where m0 is the number of data points with nonzero weight.

Values of the approximations may subsequently be computed using nag_1d_cheb_eval (e02aec) or
nag_1d_cheb_eval2 (e02akc).

e02 – Curve and Surface Fitting e02agc

Mark 24 e02agc.1

../E02/e02aec.pdf
../E02/e02akc.pdf

First nag_1d_cheb_fit_constr (e02agc) determines a polynomial � �xð Þ, of degree n � 1, which satisfies
the given constraints, and a polynomial � �xð Þ, of degree n, which has value (or derivative) zero wherever
a constrained value (or derivative) is specified. It then fits yr � � xrð Þ, for r ¼ 1; 2; . . . ;m, with
polynomials of the required degree in �x each with factor � �xð Þ. Finally the coefficients of � �xð Þ are added
to the coefficients of these fits to give the coefficients of the constrained polynomial approximations to
the data points xr ; yrð Þ, for r ¼ 1; 2; . . . ;m. The method employed is given in Hayes (1970): it is an
extension of Forsythe’s orthogonal polynomials method (see Forsythe (1957)) as modified by Clenshaw
(see Clenshaw (1960)).

4 References

Clenshaw C W (1960) Curve fitting with a digital computer Comput. J. 2 170–173

Forsythe G E (1957) Generation and use of orthogonal polynomials for data fitting with a digital
computer J. Soc. Indust. Appl. Math. 5 74–88

Hayes J G (ed.) (1970) Numerical Approximation to Functions and Data Athlone Press, London

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: m – Integer Input

On entry: m, the number of data points to be fitted.

Constraint: m � 1.

3: k – Integer Input

On entry: k, the maximum degree required.

Constraint: n � k � m00 þ n � 1 where n is the total number of constraints and m00 is the number
of data points with nonzero weights and distinct abscissae which do not coincide with any of the
xf r.

4: xmin – double Input
5: xmax – double Input

On entry: the lower and upper end points, respectively, of the interval xmin ; xmax½ �. Unless there
are specific reasons to the contrary, it is recommended that xmin and xmax be set respectively to
the lowest and highest value among the xr and xfr. This avoids the danger of extrapolation
provided there is a constraint point or data point with nonzero weight at each end point.

Constraint: xmax > xmin.

6: x½m� – const double Input

On entry: x½r � 1� must contain the value xr of the independent variable at the r th data point, for
r ¼ 1; 2; . . . ;m.

Constraint: the x½r� 1� must be in nondecreasing order and satisfy xmin � x½r� 1� � xmax.

7: y½m� – const double Input

On entry: y½r � 1� must contain yr , the value of the dependent variable at the r th data point, for
r ¼ 1; 2; . . . ;m.

e02agc NAG Library Manual

e02agc.2 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf

8: w½m� – const double Input

On entry: w½r � 1� must contain the weight wr to be applied to the data point xr , for
r ¼ 1; 2; . . . ;m. For advice on the choice of weights see the e02 Chapter Introduction. Negative
weights are treated as positive. A zero weight causes the corresponding data point to be ignored.
Zero weight should be given to any data point whose x and y values both coincide with those of a
constraint (otherwise the denominators involved in the root mean square residuals Si will be
slightly in error).

9: mf – Integer Input

On entry: mf , the number of values of the independent variable at which a constraint is specified.

Constraint: mf � 1.

10: xf½mf� – const double Input

On entry: xf ½r � 1� must contain xfr , the value of the independent variable at which a constraint
is specified, for r ¼ 1; 2; . . . ;mf.

Constraint: these values need not be ordered but must be distinct and satisfy
xmin � xf ½r� 1� � xmax.

11: yf½dim� – const double Input

Note: the dimension, dim, of the array yf must be at least mf þ
Xmf�1

i¼0

p½i�
 !

.

On entry: the values which the approximating polynomials and their derivatives are required to
take at the points specified in xf. For each value of xf ½r � 1�, yf contains in successive elements
the required value of the approximation, its first derivative, second derivative, . . . ; pr th derivative,
for r ¼ 1; 2; . . . ;mf. Thus the value, yfs, which the kth derivative of each approximation (k ¼ 0
referring to the approximation itself) is required to take at the point xf ½r� 1� must be contained in
yf ½s� 1�, where

s ¼ rþ kþ p1 þ p2 þ � � � þ pr�1;

where k ¼ 0; 1; . . . ; pr and r ¼ 1; 2; . . . ;mf . The derivatives are with respect to the independent
variable x.

12: p½mf� – const Integer Input

On entry: p½r � 1� must contain pr , the order of the highest-order derivative specified at xf ½r � 1�,
for r ¼ 1; 2; . . . ;mf. pr ¼ 0 implies that the value of the approximation at xf ½r� 1� is specified,
but not that of any derivative.

Constraint: p½r � 1� � 0, for r ¼ 1; 2; . . . ;mf.

13: a½dim� – double Output

Note: the dimension, dim, of the array a must be at least k þ 1ð Þ � k þ 1ð Þ.
Where A i; jð Þ appears in this document, it refers to the array element

a½ j� 1ð Þ � k þ 1ð Þ þ i� 1� when order ¼ Nag ColMajor;
a½ i� 1ð Þ � k þ 1ð Þ þ j� 1� when order ¼ Nag RowMajor.

On exit: A i þ 1; j þ 1ð Þ contains the coefficient aij in the approximating polynomial of degree i,
for i ¼ n; . . . ; k and j ¼ 0; 1; . . . ; i.

14: s½k þ 1� – double Output

On exit: s½i� contains Si, for i ¼ n; . . . ; k, the root mean square residual corresponding to the
approximating polynomial of degree i. In the case where the number of data points with nonzero
weight is equal to kþ 1� n, Si is indeterminate: the function sets it to zero. For the interpretation

e02 – Curve and Surface Fitting e02agc

Mark 24 e02agc.3

../E02/e02intro.pdf

of the values of Si and their use in selecting an appropriate degree, see Section 3.1 in the e02
Chapter Introduction.

15: n – Integer * Output

O n e x i t : c o n t a i n s t h e t o t a l n u m b e r o f c o n s t r a i n t c o n d i t i o n s i m p o s e d :
n ¼ mf þ p1 þ p2 þ � � � þ pmf .

16: resid½m� – double Output

On exit: contains weighted residuals of the highest degree of fit determined kð Þ. The residual at xr

is in element resid½r � 1�, for r ¼ 1; 2; . . . ;m.

17: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_CONSTRAINT

On entry, k ¼ valueh i and ¼ valueh i.
Constraint: n � k � m00 þ n � 1 where n is the total number of constraints and m00 is the number
of data points with nonzero weights and distinct abscissae which do not coincide with any of the
xf r.

NE_ILL_CONDITIONED

The polynomials mu xð Þ and/or nu xð Þ cannot be found. The problem is too ill-conditioned.

NE_INT

On entry, m ¼ valueh i.
Constraint: m � 1.

On entry, mf ¼ valueh i.
Constraint: mf � 1.

NE_INT_3

On entry, k þ 1 > m00 þ n, where m00 is the number of data points with nonzero weight and
distinct abscissae different from all xf, and n is the total number of constraints: k þ 1 ¼ valueh i,
m00 ¼ valueh i and n ¼ valueh i.

NE_INT_ARRAY

On entry, mf ¼ valueh i and p½r � 1� ¼ valueh i.
Constraint: p½r � 1� � 0, for r ¼ 1; 2; . . . ;mf.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

e02agc NAG Library Manual

e02agc.4 Mark 24

../E02/e02intro.pdf
../E02/e02intro.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf

NE_NOT_MONOTONIC

On entry, i ¼ valueh i, x½i � 1� ¼ valueh i and x½i � 2� ¼ valueh i.
Constraint: x½i � 1� � x½i � 2�.

NE_REAL_2

On entry, xmin ¼ valueh i and xmax ¼ valueh i.
Constraint: xmin < xmax.

NE_REAL_ARRAY

On entry, I ¼ valueh i, xf ½I � 1� ¼ valueh i, J ¼ valueh i and xf ½J � 1� ¼ valueh i.
Constraint: xf ½I � 1� 6¼ xf ½J � 1�.
On entry, xf ½I � 1� lies outside interval xmin; xmax½ �: I ¼ valueh i, xf ½I � 1� ¼ valueh i,
xmin ¼ valueh i and xmax ¼ valueh i.
On entry, x½I � 1� lies outside interval xmin; xmax½ �: I ¼ valueh i, x½I � 1� ¼ valueh i,
xmin ¼ valueh i and xmax ¼ valueh i.
On entry, x½I � 1� lies outside interval xmin; xmax½ � for some I .

7 Accuracy

No complete error analysis exists for either the interpolating algorithm or the approximating algorithm.
However, considerable experience with the approximating algorithm shows that it is generally extremely
satisfactory. Also the moderate number of constraints, of low-order, which are typical of data fitting
applications, are unlikely to cause difficulty with the interpolating function.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken to form the interpolating polynomial is approximately proportional to n3, and that to
form the approximating polynomials is very approximately proportional to m kþ 1ð Þ kþ 1� nð Þ.
To carry out a least squares polynomial fit without constraints, use nag_1d_cheb_fit (e02adc). To carry
out polynomial interpolation only, use nag_1d_cheb_interp (e01aec).

10 Example

This example reads data in the following order, using the notation of the argument list above:

mf

p½i � 1�, xf ½i � 1�, Y-value and derivative values (if any) at xf ½i � 1�, for i ¼ 1; 2; . . . ;mf

m

x½i � 1�, y½i � 1�, w½i � 1�, for i ¼ 1; 2; . . . ;m

k, xmin, xmax

The output is:

the root mean square residual for each degree from n to k;

the Chebyshev coefficients for the fit of degree k;

the data points, and the fitted values and residuals for the fit of degree k.

The program is written in a generalized form which will read any number of datasets.

e02 – Curve and Surface Fitting e02agc

Mark 24 e02agc.5

../E02/e02adc.pdf
../E01/e01aec.pdf

The dataset supplied specifies 5 data points in the interval 0:0; 4:0½ � with unit weights, to which are to be
fitted polynomials, p, of degrees up to 4, subject to the 3 constraints:

p 0:0ð Þ ¼ 1:0; p0 0:0ð Þ ¼ �2:0; p 4:0ð Þ ¼ 9:0:

10.1 Program Text

/* nag_1d_cheb_fit_constr (e02agc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage02.h>

int main(void)
{

/* Scalars */
double fiti, xmax, xmin;
Integer exit_status, i, iy, j, k, h, m, mf, n, pda, stride;
NagError fail;
Nag_OrderType order;

/* Arrays */
double *a = 0, *s = 0, *w = 0, *resid = 0,
*x = 0, *xf = 0, *y = 0, *yf = 0;
Integer *p = 0;

#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J-1)*pda + I - 1]

order = Nag_ColMajor;
#else
#define A(I, J) a[(I-1)*pda + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

exit_status = 0;
printf("nag_1d_cheb_fit_constr (e02agc) Example Program Results\n");

/* Skip heading in data file */
scanf("%*[^\n] ");
while (scanf("%ld%*[^\n] ", &mf) != EOF)

{
if (mf > 0)

{
/* Allocate memory for p and xf. */
if (!(p = NAG_ALLOC(mf, Integer)) ||

!(xf = NAG_ALLOC(mf, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read p, xf and yf arrays */
iy = 1;
n = mf;
for (i = 0; i < mf; ++i)

{
scanf("%ld%lf", &p[i], &xf[i]);
h = iy + p[i] + 1;
/* We need to extend array yf as we go along */
if (!(yf = NAG_REALLOC(yf, h - 1, double)))

{

e02agc NAG Library Manual

e02agc.6 Mark 24

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
for (j = iy-1; j < h - 1; ++j)

scanf("%lf", &yf[j]);
scanf("%*[^\n] ");
n += p[i];
iy = h;

}
scanf("%ld%*[^\n] ", &m);

if (m > 0)
{

/* Allocate memory for x, y and w. */
if (!(x = NAG_ALLOC(m, double)) ||

!(y = NAG_ALLOC(m, double)) ||
!(w = NAG_ALLOC(m, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
for (i = 0; i < m; ++i)

scanf("%lf%lf%lf", &x[i], &y[i], &w[i]);
scanf("%*[^\n] ");
scanf("%ld%lf%lf%*[^\n] ", &k, &xmin, &xmax);
pda = k + 1;

/* Allocate arrays a, s and resid */
if (!(a = NAG_ALLOC((k + 1) * (k + 1), double)) ||

!(s = NAG_ALLOC((k + 1), double)) ||
!(resid = NAG_ALLOC(m, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* nag_1d_cheb_fit_constr (e02agc).
* Least-squares polynomial fit, values and derivatives may
* be constrained, arbitrary data points
*/

nag_1d_cheb_fit_constr(order, m, k, xmin, xmax, x, y, w, mf, xf,
yf, p, a, s, &n, resid, &fail);

if (fail.code != NE_NOERROR)
{

printf(
"Error from nag_1d_cheb_fit_constr (e02agc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

printf("\n");
printf("Degree RMS residual\n");
for (i = n; i <= k; ++i)

printf("%4ld%15.2e\n", i, s[i]);
printf("\n");

printf("Details of the fit of degree %2ld\n", k);
printf("\n");
printf(" Index Coefficient\n");
for (i = 0; i < k + 1; ++i)

printf("%6ld%11.4f\n", i, A(k+1, i+1));
printf("\n");

printf(
" i x(i) y(i) Fit Residual\n");

for (i = 0; i < m; ++i)
{

e02 – Curve and Surface Fitting e02agc

Mark 24 e02agc.7

/* Note that the coefficients of polynomial are stored in the
* rows of A hence when the storage is in Nag_ColMajor order
* then stride is the first dimension of A, k + 1.
* When the storage is in Nag_RowMajor order then stride is 1.
*/

#ifdef NAG_COLUMN_MAJOR
stride = k + 1;

#else
stride = 1;

#endif
/* nag_1d_cheb_eval2 (e02akc).
* Evaluation of fitted polynomial in one variable from
* Chebyshev series form
*/

nag_1d_cheb_eval2(k, xmin, xmax, &A(k+1, 1), stride, x[i],
&fiti, &fail);

if (fail.code != NE_NOERROR)
{

printf(
"Error from nag_1d_cheb_eval2 (e02akc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}
printf("%6ld%11.4f%11.4f%11.4f", i, x[i], y[i],

fiti);
printf("%11.2e\n", fiti - y[i]);

}
}

}
}

END:
NAG_FREE(a);
NAG_FREE(s);
NAG_FREE(w);
NAG_FREE(resid);
NAG_FREE(x);
NAG_FREE(xf);
NAG_FREE(y);
NAG_FREE(yf);
NAG_FREE(p);

return exit_status;
}

10.2 Program Data

nag_1d_cheb_fit_constr (e02agc) Example Program Data
2
1 0.0 1.0 -2.0
0 4.0 9.0
5

0.5 0.03 1.0
1.0 -0.75 1.0
2.0 -1.0 1.0
2.5 -0.1 1.0
3.0 1.75 1.0

4 0.0 4.0

e02agc NAG Library Manual

e02agc.8 Mark 24

10.3 Program Results

nag_1d_cheb_fit_constr (e02agc) Example Program Results

Degree RMS residual
3 2.55e-03
4 2.94e-03

Details of the fit of degree 4

Index Coefficient
0 3.9980
1 3.4995
2 3.0010
3 0.5005
4 -0.0000

i x(i) y(i) Fit Residual
0 0.5000 0.0300 0.0310 1.02e-03
1 1.0000 -0.7500 -0.7508 -7.81e-04
2 2.0000 -1.0000 -1.0020 -2.00e-03
3 2.5000 -0.1000 -0.0961 3.95e-03
4 3.0000 1.7500 1.7478 -2.17e-03

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0.5 1 1.5 2 2.5 3

-0.004

-0.002

 0

 0.002

 0.004

P
ol

yn
om

ia
l F

it
 P

(x
)

R
es

id
ua

l P
(x

i)−
y i

x

Example Program
 Constrained Least-squares Polynomial Approximation

re
si

du
al

po
ly

no
m

ia
l f

it

data points

e02 – Curve and Surface Fitting e02agc

Mark 24 e02agc.9 (last)

	e02agc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Clenshaw (1960)
	Forsythe (1957)
	Hayes (1970)

	5 Arguments
	order
	m
	k
	xmin
	xmax
	x
	y
	w
	mf
	xf
	yf
	p
	a
	s
	n
	resid
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_CONSTRAINT
	NE_ILL_CONDITIONED
	NE_INT
	NE_INT_3
	NE_INT_ARRAY
	NE_INTERNAL_ERROR
	NE_NOT_MONOTONIC
	NE_REAL_2
	NE_REAL_ARRAY

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

