
NAG Library Function Document

nag_1d_ratnl_interp (e01rac)

1 Purpose

nag_1d_ratnl_interp (e01rac) produces, from a set of function values and corresponding abscissae, the
coefficients of an interpolating rational function expressed in continued fraction form.

2 Specification

#include <nag.h>
#include <nage01.h>

void nag_1d_ratnl_interp (Integer n, const double x[], const double f[],
Integer *m, double a[], double u[], NagError *fail)

3 Description

nag_1d_ratnl_interp (e01rac) produces the parameters of a rational function R xð Þ which assumes
prescribed values fi at prescribed values xi of the independent variable x, for i ¼ 1; 2; . . . ; n. More
specifically, nag_1d_ratnl_interp (e01rac) determines the parameters aj, for j ¼ 1; 2; . . . ;m and uj, for
j ¼ 1; 2; . . . ;m� 1, in the continued fraction

R xð Þ ¼ a1 þRm xð Þ ð1Þ

where

Ri xð Þ ¼
am�iþ2 x� um�iþ1ð Þ

1þRi�1 xð Þ
; for i ¼ m;m� 1; . . . ; 2;

and

R1 xð Þ ¼ 0;

such that R xið Þ ¼ fi, for i ¼ 1; 2; . . . ; n. The value of m in (1) is determined by the function; normally
m ¼ n. The values of uj form a reordered subset of the values of xi and their ordering is designed to
ensure that a representation of the form (1) is determined whenever one exists.

The subsequent evaluation of (1) for given values of x can be carried out using nag_1d_ratnl_eval
(e01rbc).

The computational method employed in nag_1d_ratnl_interp (e01rac) is the modification of the Thacher–
Tukey algorithm described in Graves–Morris and Hopkins (1981).

4 References

Graves–Morris P R and Hopkins T R (1981) Reliable rational interpolation Numer. Math. 36 111–128

5 Arguments

1: n – Integer Input

On entry: n, the number of data points.

Constraint: n > 0.

e01 – Interpolation e01rac

Mark 24 e01rac.1

../E01/e01rbc.pdf
../E01/e01rbc.pdf

2: x½n� – const double Input

On entry: x½i � 1� must be set to the value of the ith data abscissa, xi, for i ¼ 1; 2; . . . ; n.

Constraint: the x½i� 1� must be distinct.

3: f½n� – const double Input

On entry: f ½i � 1� must be set to the value of the data ordinate, fi, corresponding to xi, for
i ¼ 1; 2; . . . ; n.

4: m – Integer * Output

On exit: m, the number of terms in the continued fraction representation of R xð Þ.

5: a½n� – double Output

On exit: a½j � 1� contains the value of the parameter aj in R xð Þ, for j ¼ 1; 2; . . . ;m. The remaining
elements of a, if any, are set to zero.

6: u½n� – double Output

On exit: u½j � 1� contains the value of the parameter uj in R xð Þ, for j ¼ 1; 2; . . . ;m� 1. The uj
are a permuted subset of the elements of x. The remaining n�mþ 1 locations contain a
permutation of the remaining xi, which can be ignored.

7: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_CONT_FRAC

A continued fraction of the required form does not exist.

NE_INT

On entry, n ¼ valueh i.
Constraint: n > 0.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_REAL_ARRAY

On entry, x½I � 1� is very close to x½J � 1�: I ¼ valueh i, x½I � 1� ¼ valueh i, J ¼ valueh i and
x½J � 1� ¼ valueh i.

7 Accuracy

Usually, it is not the accuracy of the coefficients produced by this function which is of prime interest, but
rather the accuracy of the value of R xð Þ that is produced by the associated function nag_1d_ratnl_eval
(e01rbc) when subsequently it evaluates the continued fraction (1) for a given value of x. This final

e01rac NAG Library Manual

e01rac.2 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf
../E01/e01rbc.pdf
../E01/e01rbc.pdf

accuracy will depend mainly on the nature of the interpolation being performed. If interpolation of a
‘well-behaved smooth’ function is attempted (and provided the data adequately represents the function),
high accuracy will normally ensue, but, if the function is not so ‘smooth’ or extrapolation is being
attempted, high accuracy is much less likely. Indeed, in extreme cases, results can be highly inaccurate.

There is no built-in test of accuracy but several courses are open to you to prevent the production or the
acceptance of inaccurate results.

1. If the origin of a variable is well outside the range of its data values, the origin should be shifted to
correct this; and, if the new data values are still excessively large or small, scaling to make the
largest value of the order of unity is recommended. Thus, normalization to the range �1:0 to þ1:0
is ideal. This applies particularly to the independent variable; for the dependent variable, the
removal of leading figures which are common to all the data values will usually suffice.

2. To check the effect of rounding errors engendered in the functions themselves, nag_1d_ratnl_interp
(e01rac) should be re-entered with x1 interchanged with xi and f1 with fi, i 6¼ 1ð Þ. This will
produce a completely different vector a and a reordered vector u, but any change in the value of
R xð Þ subsequently produced by nag_1d_ratnl_eval (e01rbc) will be due solely to rounding error.

3. Even if the data consist of calculated values of a formal mathematical function, it is only in
exceptional circumstances that bounds for the interpolation error (the difference between the true
value of the function underlying the data and the value which would be produced by the two
functions if exact arithmetic were used) can be derived that are sufficiently precise to be of practical
use. Consequently, you are recommended to rely on comparison checks: if extra data points are
available, the calculation may be repeated with one or more data pairs added or exchanged, or
alternatively, one of the original data pairs may be omitted. If the algorithms are being used for
extrapolation, the calculations should be performed repeatedly with the 2; 3; . . . nearest points until,
hopefully, successive values of R xð Þ for the given x agree to the required accuracy.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by nag_1d_ratnl_interp (e01rac) is approximately proportional to n2.

The continued fraction (1) when expanded produces a rational function in x, the degree of whose
numerator is either equal to or exceeds by unity that of the denominator. Only if this rather special form
of interpolatory rational function is needed explicitly, would this function be used without subsequent
entry (or entries) to nag_1d_ratnl_eval (e01rbc).

10 Example

This example reads in the abscissae and ordinates of 5 data points and prints the arguments aj and uj of
a rational function which interpolates them.

10.1 Program Text

/* nag_1d_ratnl_interp (e01rac) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage01.h>

int main(void)
{

e01 – Interpolation e01rac

Mark 24 e01rac.3

../E01/e01rbc.pdf
../E01/e01rbc.pdf

/* Scalars */
Integer exit_status, i, m, n;
NagError fail;

/* Arrays */
double *a = 0, *f = 0, *u = 0, *x = 0;

exit_status = 0;
INIT_FAIL(fail);

printf("nag_1d_ratnl_interp (e01rac) Example Program Results\n");

/* Skip heading in data file */
scanf("%*[^\n] ");
n = 5;

/* Allocate memory */
if (!(a = NAG_ALLOC(n, double)) ||

!(f = NAG_ALLOC(n, double)) ||
!(u = NAG_ALLOC(n, double)) ||
!(x = NAG_ALLOC(n, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

for (i = 1; i <= n; ++i)
scanf("%lf", &x[i-1]);

scanf("%*[^\n] ");

for (i = 1; i <= n; ++i)
scanf("%lf", &f[i-1]);

scanf("%*[^\n] ");

/* nag_1d_ratnl_interp (e01rac).
* Interpolating functions, rational interpolant, one
* variable
*/

nag_1d_ratnl_interp(n, x, f, &m, a, u, &fail);
if (fail.code != NE_NOERROR)

{
exit_status = 1;
printf("Error from nag_1d_ratnl_interp (e01rac).\n%s\n",

fail.message);
goto END;

}

printf("\n");
printf("The values of u[j] are\n");
for (i = 1; i <= m - 1; ++i)

{
printf("%13.4e", u[i-1]);
printf(i%4 == 0 || i == m - 1?"\n":" ");

}
printf("\n");

printf("The Thiele coefficients a[j] are\n");
for (i = 1; i <= m; ++i)

{
printf("%13.4e", a[i-1]);
printf(i%4 == 0 || i == m?"\n":" ");

}

END:
NAG_FREE(a);
NAG_FREE(f);
NAG_FREE(u);
NAG_FREE(x);

e01rac NAG Library Manual

e01rac.4 Mark 24

return exit_status;
}

10.2 Program Data

nag_1d_ratnl_interp (e01rac) Example Program Data
0.0 1.0 2.0 3.0 4.0
4.0 2.0 4.0 7.0 10.4

10.3 Program Results

nag_1d_ratnl_interp (e01rac) Example Program Results

The values of u[j] are
0.0000e+00 3.0000e+00 1.0000e+00

The Thiele coefficients a[j] are
4.0000e+00 1.0000e+00 7.5000e-01 -1.0000e+00

e01 – Interpolation e01rac

Mark 24 e01rac.5 (last)

	e01rac
	1 Purpose
	2 Specification
	3 Description
	4 References
	Graves-Morris and Hopkins (1981)

	5 Arguments
	n
	x
	f
	m
	a
	u
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_CONT_FRAC
	NE_INT
	NE_INTERNAL_ERROR
	NE_REAL_ARRAY

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

