NAG Library Function Document nag_numdiff_1d_real_absci (d04bbc)

1 Purpose

nag_numdiff_1d_real_absci (d04bbc) generates abscissae about a target abscissa x_{0} for use in a subsequent call to nag_numdiff_1d_real_eval (d04bac).

2 Specification

\#include <nag.h>
\#include <nagd04.h>
void nag_numdiff_ld_real_absci (double x_0, double hbase, double xval[])

3 Description

nag_numdiff_1d_real_absci (d04bbc) may be used to generate the necessary abscissae about a target abscissa $x_{0} \overline{\text { for }}$ the calculation of derivatives using nag_numdiff_1d_real_eval (d04bac).
For a given x_{0} and h, the abscissae correspond to the set $\left\{x_{0}, x_{0} \pm(2 j-1) h\right\}$, for $j=1,2, \ldots, 10$. These 21 points will be returned in ascending order in xval. In particular, xval[10] will be equal to x_{0}.

4 References

Lyness J N and Moler C B (1969) Generalised Romberg methods for integrals of derivatives Numer. Math. 14 1-14

5 Arguments

1: $\quad \mathbf{x} \mathbf{0}$ - double Input
On entry: the abscissa x_{0} at which derivatives are required.
2: hbase - double Input
On entry: the chosen step size h. If $h<10 \epsilon$, where $\epsilon=$ nag_machine_precision, then the default $h=\epsilon^{(1 / 4)}$ will be used.

3: xval[21] - double Output
On exit: the abscissae for passing to nag_numdiff_1d_real_eval (d04bac).

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The results computed by nag_numdiff_1d_real_eval (d04bac) depend very critically on the choice of the user-supplied step length h. The overall accuracy is diminished as h becomes small (because of the effect of round-off error) and as h becomes large (because the discretization error also becomes large). If the process of calculating derivatives is repeated four or five times with different values of h one can find a reasonably good value. A process in which the value of h is successively halved (or doubled) is usually quite effective. Experience has shown that in cases in which the Taylor series for for the objective function about x_{0} has a finite radius of convergence R, the choices of $h>R / 19$ are not likely to lead to good results. In this case some function values lie outside the circle of convergence.

10 Example

See Section 10 in nag_numdiff_1d_real_eval (d04bac).

