
NAG Library Function Document

nag_numdiff_1d_real_eval (d04bac)

1 Purpose

nag_numdiff_1d_real_eval (d04bac) calculates a set of derivatives (up to order 14) of a function at a
point with respect to a single variable. A corresponding set of error estimates is also returned.
Derivatives are calculated using an extension of the Neville algorithm. This function differs from
nag_numdiff_1d_real (d04aac), in that the abscissae and corresponding function values must be
calculated before this function is called. The abscissae may be generated using
nag_numdiff_1d_real_absci (d04bbc).

2 Specification

#include <nag.h>
#include <nagd04.h>

void nag_numdiff_1d_real_eval (const double xval[], const double fval[],
double der[], double erest[], NagError *fail)

3 Description

nag_numdiff_1d_real_eval (d04bac) provides a set of approximations:

der½j� 1�; j ¼ 1; 2; . . . ; 14

to the derivatives:

f jð Þ x0ð Þ; j ¼ 1; 2; . . . ; 14

of a real valued function f xð Þ at a real abscissa x0, together with a set of error estimates:

erest½j� 1�; j ¼ 1; 2; . . . ; 14

which hopefully satisfy:

der½j� 1� � f jð Þ x0ð Þ
�� �� < erest½j� 1�; j ¼ 1; 2; . . . ; 14:

The results der½j� 1� and erest½j� 1� are based on 21 function values:

f x0ð Þ; f x0 � 2i� 1ð Þhð Þ; i ¼ 1; 2; . . . ; 10:

The abscissae x and the corresponding function values f xð Þ should be passed into
nag_numdiff_1d_real_eval (d04bac) as the vectors xval and fval respectively. The step size h is
derived from the abscissae in xval. See Section 9 for a discussion of how the derived value of h may
affect the results of nag_numdiff_1d_real_eval (d04bac). The order in which the abscissae and function
values are stored in xval and fval is irrelevant, provided that the function value at any given index
corresponds to the value of the abscissa at the same index. Abscissae may be automatically generated
using nag_numdiff_1d_real_absci (d04bbc) if desired. For each derivative nag_numdiff_1d_real_eval
(d04bac) employs an extension of the Neville Algorithm (see Lyness and Moler (1969)) to obtain a
selection of approximations.

For example, for odd derivatives, this function calculates a set of numbers:

Tk;p;s; p ¼ s; sþ 1; . . . ; 6; k ¼ 0; 1; . . . ; 9� p

each of which is an approximation to f 2sþ1ð Þ x0ð Þ= 2sþ 1ð Þ!. A specific approximation Tk;p;s is of
polynomial degree 2pþ 2 and is based on polynomial interpolation using function values
f x0 � 2i� 1ð Þhð Þ, for k ¼ k; . . . ; k þ p. In the absence of round-off error, the better approximations
would be associated with the larger values of p and of k. However, round-off error in function values has

d04 – Numerical Differentiation d04bac

Mark 24 d04bac.1

../D04/d04aac.pdf
../D04/d04bbc.pdf
../D04/d04bbc.pdf

an increasingly contaminating effect for successively larger values of p. This function proceeds to make
a judicious choice between all the approximations in the following way.

For a specified value of s, let:

Rp ¼ Up � Lp; p ¼ s; sþ 1; . . . ; 6

where Up ¼ max
k

Tk;p;s

� �
and Lp ¼ min

k
Tk;p;s

� �
, for k ¼ 0; 1; . . . ; 9� p, and let �p be such that

R�p ¼ min
p

Rp

� �
, for p ¼ s; . . . ; 6.

This function returns:

der½2s� ¼ 1

8� �p
�

X9��p

k¼0

Tk;�p;s � U�p � L�p

()
2sþ 1ð Þ!

and

erest½2s� ¼ R�p � 2sþ 1ð Þ!�K2sþ1

where Kj is a safety factor which has been assigned the values:

Kj ¼ 1, j � 9
Kj ¼ 1:5, j ¼ 10; 11
Kj ¼ 2 j � 12,

on the basis of performance statistics.

The even order derivatives are calculated in a precisely analogous manner.

4 References

Lyness J N and Moler C B (1969) Generalised Romberg methods for integrals of derivatives Numer.
Math. 14 1–14

5 Arguments

1: xval½21� – const double Input

On entry: the abscissae at which the function has been evaluated, as described in Section 3. These
can be generated by calling nag_numdiff_1d_real_absci (d04bbc). The order of the abscissae is
irrelevant.

Constraint: the values in xval must span the set x0; x0 � 2j � 1ð Þhf g, for j ¼ 1; 2; . . . ; 10.

2: fval½21� – const double Input

On entry: fval½j � 1� must contain the function value at xval½j � 1�, for j ¼ 1; 2; . . . ; 21.

3: der½14� – double Output

On exit: the 14 derivative estimates.

4: erest½14� – double Output

On exit: the 14 error estimates for the derivatives.

5: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

d04bac NAG Library Manual

d04bac.2 Mark 24

../D04/d04bbc.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf

6 Error Indicators and Warnings

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_SPACING_INCORRECT

On entry, the values of xval are not correctly spaced.
Derived h ¼ valueh i.

NE_TOO_SMALL

The derived h is below tolerance.
Derived h > valueh i is required. Derived h ¼ valueh i.

7 Accuracy

The accuracy of the results is problem dependent. An estimate of the accuracy of each result der½j� 1�
is returned in erest½j� 1� (see Sections 3, 5 and 9).

A basic feature of any floating-point function for numerical differentiation based on real function values
on the real axis is that successively higher order derivative approximations are successively less accurate.
It is expected that in most cases der½13� will be unusable. As an aid to this process, the sign of
erest½j� 1� is set negative when the estimated absolute error is greater than the approximate derivative
itself, i.e., when the approximate derivative may be so inaccurate that it may even have the wrong sign.
It is also set negative in some other cases when information available to nag_numdiff_1d_real_eval
(d04bac) indicates that the corresponding value of der½j� 1� is questionable.

The actual values in erest depend on the accuracy of the function values, the properties of the machine
arithmetic, the analytic properties of the function being differentiated and the step length h (see
Section 9). The only hard and fast rule is that for a given objective function and h, the values of
erest½j� 1� increase with increasing j. The limit of 14 is dictated by experience. Only very rarely can
one obtain meaningful approximations for higher order derivatives on conventional machines.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The results depend very critically on the choice of the step length h. The overall accuracy is diminished
as h becomes small (because of the effect of round-off error) and as h becomes large (because the
discretization error also becomes large). If this function is used four or five times with different values of
h one can find a reasonably good value. A process in which the value of h is successively halved (or
doubled) is usually quite effective. Experience has shown that in cases in which the Taylor series for the
objective function about x0 has a finite radius of convergence R, the choices of h > R=19 are not likely
to lead to good results. In this case some function values lie outside the circle of convergence.

As mentioned, the order of the abscissae in xval does not matter, provided the corresponding values of
fval are ordered identically. If the abscissae are generated by nag_numdiff_1d_real_absci (d04bbc), then
they will be in ascending order. In particular, the target abscissa x0 will be stored in xval½10�.

d04 – Numerical Differentiation d04bac

Mark 24 d04bac.3

../D04/d04bbc.pdf

10 Example

This example evaluates the derivatives of the polygamma function, calculated using
nag_real_polygamma (s14aec), and compares the first 3 derivatives calculated to those found using
nag_real_polygamma (s14aec).

10.1 Program Text

/* nag_numdiff_1d_real_eval (d04bac) Example Program.
*
* Copyright 2011, Numerical Algorithms Group.
*
* Mark 23, 2011.
*/

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd04.h>
#include <nags.h>
#include <nagx04.h>

int main(void)
{
/* DER_COMP is used to store results in column major format only. */
#define DER_COMP(I, J, K) der_comp[I + J*n_hbase + K*n_hbase*n_der_comp]

Integer exit_status = 0;
double x_0;
Integer n_der_comp, n_display, n_hbase;
double hbase;
Integer i, j, k;
char title[51];
double der[14], erest[14], fval[21], xval[21];
double *actder = 0, *der_comp = 0;
char *clabs = 0, **clabsc = 0;
NagError fail;

INIT_FAIL(fail);

printf("nag_numdiff_1d_real_eval (d04bac) Example Program Results\n");

printf("\n"
"Find the derivatives of the polygamma (psi) function\n"
"using function values generated by nag_real_polygamma (s14aec).\n\n"
"Demonstrate the effect of successively reducing hbase.\n\n");

fflush(stdout);

n_der_comp = 3;
n_display = 3;
n_hbase = 4;

if (!(clabs = NAG_ALLOC(n_der_comp*10, char)) ||
!(clabsc = NAG_ALLOC(n_der_comp, char *)) ||
!(actder = NAG_ALLOC(n_display, double)) ||
!(der_comp = NAG_ALLOC(n_hbase*n_der_comp*14, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

x_0 = 0.05;

/* Select an initial separation distance hbase. */
hbase = 0.0025;

d04bac NAG Library Manual

d04bac.4 Mark 24

../S/s14aec.pdf
../S/s14aec.pdf

/* Compute the actual derivatives at target location x_0
* using nag_real_polygamma (s14aec), for comparison.
*/

for (j = 0; j < n_display; j++)
{

/* nag_real_polygamma (s14aec).
* Derivative of the psi function psi(x).
*/

actder[j] = nag_real_polygamma(x_0, j+1, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_real_polygamma (s14aec).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}
}

/* Attempt n_hbase approximations, reducing hbase by factor 0.1 each time. */
for (j = 0; j < n_hbase; j++)

{
/* nag_numdiff_1d_real_absci (d04bbc).
* Generates sample points for function evaluations
* by nag_numdiff_1d_real_eval (d04bac).
*/

nag_numdiff_1d_real_absci(x_0, hbase, xval);

/* Calculate the corresponding objective function values. */
for (k = 0; k < 21; k++)

{
fval[k] = nag_real_polygamma(xval[k], 0, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_real_polygamma (s14aec).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}
}

/* Calculate the derivative estimates. */

/* nag_numdiff_1d_real_eval (d04bac).
* Numerical differentiation, user-supplied function values,
* derivatives up to order 14,
* derivatives with respect to one real variable.
*/

nag_numdiff_1d_real_eval(xval, fval, der, erest, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_numdiff_1d_real_eval (d04bac).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

/* Store results in DER_COMP in column major format. */
for (i = 0; i < 14; i++)

{
DER_COMP(j, 0, i) = hbase;
DER_COMP(j, 1, i) = der[i];
DER_COMP(j, 2, i) = erest[i];

}

/* Decrease hbase for next loop. */
hbase = hbase * 0.1;

}

/* Display results for first n_display derivatives. */
for (j = 0; j < n_display; j++)

{

d04 – Numerical Differentiation d04bac

Mark 24 d04bac.5

printf(" Derivative (%ld) calculated using "
"nag_real_polygamma (s14aec): %13.4e\n", j+1, actder[j]);

fflush(stdout);
sprintf(title,

"Derivative and error estimates for derivative (%ld)",
j+1);

sprintf(&clabs[0], "hbase");
sprintf(&clabs[10], "der[%ld]", j);
sprintf(&clabs[20], "erest[%ld]", j);
for (k = 0; k < n_der_comp; k++) clabsc[k] = &clabs[k*10];

/* nag_gen_real_mat_print_comp (x04cbc).
* Print real general matrix (comprehensive).
*/

nag_gen_real_mat_print_comp(Nag_ColMajor, Nag_GeneralMatrix,
Nag_NonUnitDiag, n_hbase, n_der_comp,
&DER_COMP(0, 0, j), n_hbase, NULL, title,
Nag_NoLabels, NULL, Nag_CharacterLabels,
(const char **) clabsc, 0, 0, NULL, &fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_gen_real_mat_print_comp (x04cbc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}
printf("\n");

}

END:
NAG_FREE(actder);
NAG_FREE(der_comp);
NAG_FREE(clabs);
NAG_FREE(clabsc);

return exit_status;
}

10.2 Program Data

None.

10.3 Program Results

nag_numdiff_1d_real_eval (d04bac) Example Program Results

Find the derivatives of the polygamma (psi) function
using function values generated by nag_real_polygamma (s14aec).

Demonstrate the effect of successively reducing hbase.

Derivative (1) calculated using nag_real_polygamma (s14aec): 4.0153e+02
Derivative and error estimates for derivative (1)

hbase der[0] erest[0]
2.5000e-03 4.0204e+02 1.3940e+02
2.5000e-04 4.0153e+02 4.9170e-11
2.5000e-05 4.0153e+02 2.1799e-10
2.5000e-06 4.0153e+02 1.1826e-09

Derivative (2) calculated using nag_real_polygamma (s14aec): -1.6002e+04
Derivative and error estimates for derivative (2)

hbase der[1] erest[1]
2.5000e-03 -1.6022e+04 5.5760e+03
2.5000e-04 -1.6002e+04 1.2831e-07
2.5000e-05 -1.6002e+04 6.0543e-06
2.5000e-06 -1.6002e+04 9.5762e-04

Derivative (3) calculated using nag_real_polygamma (s14aec): 9.6001e+05
Derivative and error estimates for derivative (3)

hbase der[2] erest[2]

d04bac NAG Library Manual

d04bac.6 Mark 24

2.5000e-03 9.1465e+05 -7.3750e+06
2.5000e-04 9.6001e+05 2.3718e-04
2.5000e-05 9.6001e+05 4.2253e-02
2.5000e-06 9.6001e+05 5.9679e+01

d04 – Numerical Differentiation d04bac

Mark 24 d04bac.7 (last)

	d04bac
	1 Purpose
	2 Specification
	3 Description
	4 References
	Lyness and Moler (1969)

	5 Arguments
	xval
	fval
	der
	erest
	fail

	6 Error Indicators and Warnings
	NE_BAD_PARAM
	NE_INTERNAL_ERROR
	NE_SPACING_INCORRECT
	NE_TOO_SMALL

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

