NAG Library Function Document nag_pde_interp_1d_coll (d03pyc)

1 Purpose

nag_pde_interp_1d_coll (d03pyc) may be used in conjunction with either nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc). It computes the solution and its first derivative at user-specified points in the spatial coordinate.

2 Specification

3 Description

nag_pde_interp_1d_coll (d03pyc) is an interpolation function for evaluating the solution of a system of partial differential equations (PDEs), or the PDE components of a system of PDEs with coupled ordinary differential equations (ODEs), at a set of user-specified points. The solution of a system of equations can be computed using nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc) on a set of mesh points; nag_pde_interp_1d_coll (d03pyc) can then be employed to compute the solution at a set of points other than those originally used in nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc). It can also evaluate the first derivative of the solution. Polynomial interpolation is used between each of the break-points $\mathbf{xbkpts}[i-1]$, for $i=1,2,\ldots,\mathbf{nbkpts}$. When the derivative is needed ($\mathbf{itype}=2$), the array $\mathbf{xp}[\mathbf{intpts}-1]$ must not contain any of the break-points, as the method, and consequently the interpolation scheme, assumes that only the solution is continuous at these points.

4 References

None.

5 Arguments

Note: the arguments **u**, **npts**, **npde**, **xbkpts**, **nbkpts**, **rsave** and **lrsave** must be supplied unchanged from either nag pde parab 1d coll (d03pdc) or nag pde parab 1d coll ode (d03pjc).

1: **npde** – Integer Input

On entry: the number of PDEs.

Constraint: $npde \ge 1$.

2: $\mathbf{u}[\mathbf{npde} \times \mathbf{npts}] - \text{const double}$

Input

On entry: the PDE part of the original solution returned in the argument **u** by the function nag pde parab 1d coll (d03pdc) or nag pde parab 1d coll ode (d03pjc).

3: **nbkpts** – Integer Input

On entry: the number of break-points.

Constraint: $\mathbf{nbkpts} \geq 2$.

Mark 24 d03pyc.1

d03pyc NAG Library Manual

4: **xbkpts**[**nbkpts**] – const double

Input

On entry: $\mathbf{xbkpts}[i-1]$, for $i=1,2,\ldots,\mathbf{nbkpts}$, must contain the break-points as used by nag pde parab 1d coll (d03pdc) or nag pde parab 1d coll ode (d03pjc).

Constraint: $xbkpts[0] < xbkpts[1] < \cdots < xbkpts[nbkpts - 1]$.

5: **npoly** – Integer

Input

On entry: the degree of the Chebyshev polynomial used for approximation as used by nag pde parab 1d coll (d03pdc) or nag pde parab 1d coll ode (d03pjc).

Constraint: $1 \le \text{npoly} \le 49$.

6: **npts** – Integer

Input

On entry: the number of mesh points as used by nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc).

Constraint: $npts = (nbkpts - 1) \times npoly + 1$.

7: $\mathbf{xp}[\mathbf{intpts}] - \mathbf{const} \ \mathbf{double}$

Input

On entry: xp[i-1], for $i=1,2,\ldots$, intpts, must contain the spatial interpolation points.

Constraints:

xbkpts
$$[0] \le \mathbf{xp}[0] < \mathbf{xp}[1] < \cdots < \mathbf{xp}[\mathbf{intpts} - 1] \le \mathbf{xbkpts}[\mathbf{nbkpts} - 1];$$
 if $\mathbf{itype} = 2$, $\mathbf{xp}[i-1] \ne \mathbf{xbkpts}[j-1]$, for $i = 1, 2, \dots, \mathbf{intpts}$ and $j = 2, 3, \dots, \mathbf{nbkpts} - 1$.

8: **intpts** – Integer

Input

On entry: the number of interpolation points.

Constraint: intpts ≥ 1 .

9: **itype** – Integer

Input

On entry: specifies the interpolation to be performed.

itvpe = 1

The solution at the interpolation points are computed.

itype = 2

Both the solution and the first derivative at the interpolation points are computed.

Constraint: **itype** = 1 or 2.

10: $\mathbf{up}[dim] - \text{double}$

Output

Note: the dimension, dim, of the array up must be at least npde \times intpts \times itype.

The element $\mathbf{UP}(i,j,k)$ is stored in the array element $\mathbf{up}[(k-1)\times\mathbf{npde}\times\mathbf{intpts}+(j-1)\times\mathbf{npde}+i-1].$

On exit: if **itype** = 1, **UP**(i, j, 1), contains the value of the solution $U_i(x_j, t_{\text{out}})$, at the interpolation points $x_i = \mathbf{xp}[j-1]$, for $j = 1, 2, ..., \mathbf{intpts}$ and $i = 1, 2, ..., \mathbf{npde}$.

If **itype** = 2, $\mathbf{UP}(i, j, 1)$ contains $U_i(x_j, t_{\text{out}})$ and $\mathbf{UP}(i, j, 2)$ contains $\frac{\partial U_i}{\partial x}$ at these points.

11: rsave[lrsave] – double

Communication Array

The array **rsave** contains information required by nag_pde_interp_1d_coll (d03pyc) as returned by nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc). The contents of **rsave** must not be changed from the call to nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc). Some elements of this array are overwritten on exit.

d03pyc.2 Mark 24

12: **Irsave** – Integer

Input

On entry: the size of the workspace rsave, as in nag_pde_parab_1d_coll (d03pdc) or nag pde parab 1d coll ode (d03pjc).

13: **fail** – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE BAD PARAM

On entry, argument $\langle value \rangle$ had an illegal value.

NE_EXTRAPOLATION

Extrapolation is not allowed.

NE_INCOMPAT_PARAM

On entry, **itype** = 2 and at least one interpolation point coincides with a break-point, i.e., interpolation point no $\langle value \rangle$ with value $\langle value \rangle$ is close to break-point $\langle value \rangle$ with value $\langle value \rangle$.

NE_INT

```
On entry, intpts \le 0: intpts = \langle value \rangle.
On entry, itype = \langle value \rangle.
Constraint: itype = 1 or 2.
On entry, nbkpts = \langle value \rangle.
Constraint: nbkpts \ge 2.
On entry, npde = \langle value \rangle.
Constraint: npde > 0.
On entry, npoly = \langle value \rangle.
Constraint: npoly > 0.
```

NE INT 3

```
On entry, \mathbf{npts} = \langle value \rangle, \mathbf{nbkpts} = \langle value \rangle and \mathbf{npoly} = \langle value \rangle. Constraint: \mathbf{npts} = (\mathbf{nbkpts} - 1) \times \mathbf{npoly} + 1.
```

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

NE NOT STRICTLY INCREASING

```
On entry, break-points xbkpts badly ordered: I = \langle value \rangle, xbkpts[I-1] = \langle value \rangle, J = \langle value \rangle and xbkpts[J-1] = \langle value \rangle.
```

On entry, interpolation points **xp** badly ordered: $I = \langle value \rangle$, **xp** $[I-1] = \langle value \rangle$, $J = \langle value \rangle$ and **xp** $[J-1] = \langle value \rangle$.

7 Accuracy

See the documents for nag pde parab 1d coll (d03pdc) or nag pde parab 1d coll ode (d03pjc).

Mark 24 d03pyc.3

d03pyc NAG Library Manual

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

See Section 10 in nag_pde_parab_1d_coll (d03pdc).

d03pyc.4 (last) Mark 24