
NAG Library Function Document

nag_ode_ivp_adams_roots (d02qfc)

1 Purpose

nag_ode_ivp_adams_roots (d02qfc) is a function for integrating a non-stiff system of first order ordinary
differential equations using a variable-order variable-step Adams’ method. A root-finding facility is
provided.

2 Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_ivp_adams_roots (Integer neqf,

void (*fcn)(Integer neqf, double x, const double y[], double f[],
Nag_User *comm),

double *t, double y[], double tout,

double (*g)(Integer neqf, double x, const double y[],
const double yp[], Integer k, Nag_User *comm),

Nag_User *comm, Nag_ODE_Adams *opt, NagError *fail)

3 Description

Given the initial values x; y1; y2; . . . ; yneqf the function integrates a non-stiff system of first order
ordinary differential equations of the type, y0i ¼ fi x; y1; y2; . . . ; yneqf

� �
, for i ¼ 1; 2; . . . ;neqf, from x ¼ t

to x ¼ tout using a variable-order variable-step Adams’ method. The system is defined by fcn, which
evaluates fi in terms of x and y1; y2; . . . ; yneqf , and y1; y2; . . . ; yneqf are supplied at x ¼ t. The function is
capable of finding roots (values of x) of prescribed event functions of the form

gj x; y; y
0ð Þ ¼ 0; j ¼ 1; 2; . . . ; neqg:

(See nag_ode_ivp_adams_setup (d02qwc) for the specification of neqg).

Each gj is considered to be independent of the others so that roots are sought of each gj individually.
The root reported by the function will be the first root encountered by any gj. Two techniques for
determining the presence of a root in an integration step are available: the sophisticated method
described in Watts (1985) and a simplified method whereby sign changes in each gj are looked for at the
ends of each integration step. The event functions are defined by g, which evaluates gj in terms of
x; y1; . . . ; yneqf and y01; . . . ; y0neqf . In one-step mode the function returns an approximation to the solution

at each integration point. In interval mode this value is returned at the end of the integration range. If a
root is detected this approximation is given at the root. You need to select the mode of operation, the
error control, the root-finding technique and various integration inputs with a prior call of the setup
function nag_ode_ivp_adams_setup (d02qwc).

For a description of the practical implementation of an Adams’ formula see Shampine and Gordon
(1975) and Shampine and Watts (1979).

d02 – Ordinary Differential d02qfc

Mark 24 d02qfc.1

../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf

4 References

Shampine L F and Gordon M K (1975) Computer Solution of Ordinary Differential Equations – The
Initial Value Problem W H Freeman & Co., San Francisco

Shampine L F and Watts H A (1979) DEPAC – design of a user oriented package of ODE solvers Report
SAND79-2374 Sandia National Laboratory

Watts H A (1985) RDEAM – An Adams ODE code with root solving capability Report SAND85-1595
Sandia National Laboratory

5 Arguments

1: neqf – Integer Input

On entry: the number of differential equations.

Constraint: neqf � 1.

2: fcn – function, supplied by the user External Function

fcn must evaluate the functions fi (that is the first derivatives y0i) for given values of its arguments
x; y1; y2; . . . ; yneqf .

The specification of fcn is:

void fcn (Integer neqf, double x, const double y[], double f[],
Nag_User *comm)

1: neqf – Integer Input

On entry: the number of differential equations.

2: x – double Input

On entry: the current value of the argument x.

3: y½neqf� – const double Input

On entry: y½i � 1� contains the current value of the argument yi, for i ¼ 1; 2; . . . ; neqf.

4: f½neqf� – double Output

On exit: f ½i � 1� must contain the value of fi, for i ¼ 1; 2; . . . ;neqf.

5: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p should be cast to the required type, e.g.,

struct user *s = (struct user *)comm ! p, to obtain the original
object’s address with appropriate type.

3: t – double * Input/Output

On entry: after a call to nag_ode_ivp_adams_setup (d02qwc) with state ¼ Nag NewStart (i.e., an
initial entry), t must be set to the initial value of the independent variable x.

On exit: the value of x at which y has been computed. This may be an intermediate output point, a
root, tout, or a point at which an error has occurred. If the integration is to be continued, possibly
with a new value for tout, t must not be changed.

d02qfc NAG Library Manual

d02qfc.2 Mark 24

../D02/d02qwc.pdf
../D02/d02qwc.pdf

4: y½neqf� – double Input/Output

On entry: the initial values of the solution y1; y2; . . . ; yneqf .

On exit: the computed values of the solution at the exit value of t. If the integration is to be
continued, possibly with a new value for tout, these values must not be changed.

5: tout – double Input

On entry: the next value of x at which a computed solution is required. For the initial t, the input
value of tout is used to determine the direction of integration. Integration is permitted in either
direction. If tout ¼ t on exit, tout must be reset beyond t in the direction of integration, before
any continuation call.

6: g – function, supplied by the user External Function

g must evaluate a given component of g x; y; y0ð Þ at a specified point.

If root-finding is not required the actual argument for g must be the NAG defined null double
function pointer NULLDFN.

The specification of g is:

double g (Integer neqf, double x, const double y[],
const double yp[], Integer k, Nag_User *comm)

1: neqf – Integer Input

On entry: the number of differential equations.

2: x – double Input

On entry: the current value of the independent variable.

3: y½neqf� – const double Input

On entry: the current values of the dependent variables.

4: yp½neqf� – const double Input

On entry: the current values of the derivatives of the dependent variables.

5: k – Integer Input

On entry: the component of g which must be evaluated.

6: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p should be cast to the required type, e.g.,

struct user *s = (struct user *)comm ! p, to obtain the original
object’s address with appropriate type.

7: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p, of type Pointer, allows you to communicate
information to and from fcn and g. An object of the required type should be declared,

d02 – Ordinary Differential d02qfc

Mark 24 d02qfc.3

e.g., a structure , and its address assigned to the pointer comm!p by means of a cast to
Pointer in the calling program. E.g. comm.p = (Pointer)&s.

8: opt – Nag_ODE_Adams *

Pointer to a structure of type Nag_ODE_Adams as initialized by the setup function
nag_ode_ivp_adams_setup (d02qwc) with the following members:

root – Nag_Boolean Output

On exit: if root-finding was required (neqg > 0 in a call to the setup function
nag_ode_ivp_adams_setup (d02qwc)), then root specifies whether or not the output value
of the argument t is a root of one of the event functions. If root ¼ Nag FALSE, then no
root was detected, whereas root ¼ Nag TRUE indicates a root.

If root-finding was not required (neqg ¼ 0) then on exit root ¼ Nag FALSE.

If root ¼ Nag FALSE, then opt!index, opt!type, opt!events and opt!resids are
indeterminate.

index – Integer Output

On exit: the index k of the event equation gk x; y; y
0ð Þ ¼ 0 for which the root has been

detected.

type – Integer Output

On exit: information about the root detected for the event equation defined by opt!index.
The possible values of type with their interpretations are as follows:

If type ¼ 1, a simple root, or lack of distinguishing information available.

If type ¼ 2, a root of even multiplicity is believed to have been detected, that is no
change in sign of the event function was found.

If type ¼ 3, a high order root of odd multiplicity.

If type ¼ 4, a possible root, but due to high multiplicity or a clustering of roots
accurate evaluation of the event function was prohibited by round-off error and/or
cancellation.

In general, the accuracy of the root is less reliable for values of type > 1.

events – Integer * Output

On exit: array pointer containing information about the kth event function on a very small
interval containing the root, t. All roots lying in this interval are considered
indistinguishable numerically and therefore should be regarded as defining a root at t.
The possible values of events½j� 1�, j ¼ 1; 2; . . . ;neqg, with their interpretations are as
follows:

events½j� 1� ¼ 0, the jth event function did not have a root;

events½j� 1� ¼ �1, the jth event function changed sign from positive to negative
about a root, in the direction of integration;

events½j� 1� ¼ 1, the jth event function changed sign from negative to positive
about a root, in the direction of integration;

events½j� 1� ¼ 2, a root was identified, but no change in sign was observed.

resids – double Output

On exit: array pointer, opt!resids½j� 1�, j ¼ 1; 2; . . . ;neqg, contains value of the jth event
function computed at the root, t.

yp – double Output

On exit: array pointer to the approximate derivative of the solution component yi at the
output value of t. These values are obtained by the evaluation of y0 ¼ f x; yð Þ except when

d02qfc NAG Library Manual

d02qfc.4 Mark 24

../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf

the output value of the argument t is tout and opt!tcurr 6¼ tout, in which case they are
obtained by interpolation.

tcurr – double Output

On exit: the value of the independent variable which the integrator has actually reached.
tcurr will always be at least as far as the output value of the argument t in the direction of
integration, but may be further.

hlast – double Output

On exit: the last successful step size used in the integration.

hnext – double Output

On exit: the next step size which the integration would attempt.

ord_last – Integer Output

On exit: the order of the method last used (successfully) in the integration.

ord_next – Integer Output

On exit: the order of the method which the integration would attempt on the next step.

nsuccess – Integer Output

On exit: the number of integration steps attempted that have been successful since the start
of the current problem.

nfail – Integer Output

On exit: the number of integration steps attempted that have failed since the start of the
current problem.

tolfac – double Output

On exit: a tolerance scale factor, tolfac � 1:0, returned when nag_ode_ivp_adams_roots
(d02qfc) exits with fail:code ¼ NE ODE TOL. If rtol and atol are uniformly scaled up by a
factor of tolfac and nag_ode_ivp_adams_setup (d02qwc) is called, the next call to
nag_ode_ivp_adams_roots (d02qfc) is deemed likely to succeed.

9: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_DIRECTION_CHANGE

The value of tout, valueh i, indicates a change in the integration direction. This is not permitted on
a continuation call.

NE_MAX_STEP

The maximum number of steps have been attempted. If integration is to be continued then the
function may be called again and a further max_step steps will be attempted (see
nag_ode_ivp_adams_setup (d02qwc) for details of max_step).

NE_NEQF

The value of neqf supplied is not the same as that given to the setup function
nag_ode_ivp_adams_setup (d02qwc). neqf ¼ valueh i but the value given to
nag_ode_ivp_adams_setup (d02qwc) was valueh i.

d02 – Ordinary Differential d02qfc

Mark 24 d02qfc.5

../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf

NE_NO_G_FUN

Root finding has been requested by setting neqg > 0, neqg ¼ valueh i, but argument g is a null
function.

NE_NO_SETUP

The setup function nag_ode_ivp_adams_setup (d02qwc) has not been called.

NE_ODE_TOL

The error tolerances are too stringent. rtol and atol should be scaled up by the factor opt!tolfac
and the integration function re-entered. opt!tolfac ¼ valueh i (see Section 9).

NE_SETUP_ERROR

The call to setup function nag_ode_ivp_adams_setup (d02qwc) produced an error.

NE_SINGULAR_POINT

A change in sign of an event function has been detected but the root-finding process appears to
have converged to a singular point of t rather than a root. Integration may be continued by calling
the function again.

NE_STIFF_PROBLEM

The problem appears to be stiff. (See the d02 Chapter Introduction for a discussion of the term
‘stiff’). Although it is inefficient to use this integrator to solve stiff problems, integration may be
continued by resetting fail and calling the function again.

NE_T_CHANGED

The value of t has been changed from valueh i to valueh i. This is not permitted on a continuation
call.

NE_T_SAME_TOUT

On entry, tout ¼ t, t is valueh i.

NE_TOUT_TCRIT

tout ¼ valueh i but crit was set Nag_TRUE in setup call and integration cannot be attempted
beyond tcrit ¼ valueh i.

NE_WEIGHT_ZERO

An error weight has become zero during the integration, see d02qwc document; atol½ valueh i� was
set to 0.0 but y½ valueh i� is now 0.0. Integration successful as far as t ¼ valueh i. The value of the
array index is returned in fail:errnum.

7 Accuracy

The accuracy of integration is determined by the arguments vectol, rtol and atol in a prior call to
nag_ode_ivp_adams_setup (d02qwc). Note that only the local error at each step is controlled by these
arguments. The error estimates obtained are not strict bounds but are usually reliable over one step. Over
a number of steps the overall error may accumulate in various ways, depending on the properties of the
differential equation system. The code is designed so that a reduction in the tolerances should lead to an
approximately proportional reduction in the error. You are strongly recommended to call
nag_ode_ivp_adams_roots (d02qfc) with more than one set of tolerances and to compare the results
obtained to estimate their accuracy.

The accuracy obtained depends on the type of error test used. If the solution oscillates around zero a
relative error test should be avoided, whereas if the solution is exponentially increasing an absolute error
test should not be used. If different accuracies are required for different components of the solution then

d02qfc NAG Library Manual

d02qfc.6 Mark 24

../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02intro.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf

a component-wise error test should be used. For a description of the error test see the specifications of
the arguments vectol, atol and rtol in the function document for nag_ode_ivp_adams_setup (d02qwc).

The accuracy of any roots located will depend on the accuracy of integration and may also be restricted
by the numerical properties of g x; y; y0ð Þ. When evaluating g you should try to write the code so that
unnecessary cancellation errors will be avoided.

8 Parallelism and Performance

Not applicable.

9 Further Comments

If the function fails with fail:code ¼ NE ODE TOL, then the combination of atol and rtol may be so
small that a solution cannot be obtained, in which case the function should be called again using larger
values for rtol and/or atol when calling the setup function nag_ode_ivp_adams_setup (d02qwc). If the
accuracy requested is really needed then you should consider whether there is a more fundamental
difficulty. For example:

(a) in the region of a singularity the solution components will usually be of a large magnitude. The
function could be used in one-step mode to monitor the size of the solution with the aim of trapping
the solution before the singularity. In any case numerical integration cannot be continued through a
singularity, and analytical treatment may be necessary;

(b) for ‘stiff’ equations, where the solution contains rapidly decaying components, the function will
require a very small step size to preserve stability. This will usually be exhibited by excessive
computing time and sometimes an error exit with fail:code ¼ NE ODE TOL, but usually an error
exit with fail:code ¼ NE MAX STEP or NE_STIFF_PROBLEM. The Adams’ methods are not
efficient in such cases. A high proportion of failed steps (see argument opt!nfail) may indicate
stiffness but there may be other reasons for this phenomenon.

nag_ode_ivp_adams_roots (d02qfc) can be used for producing results at short intervals (for example, for
graph plotting); you should set crit ¼ Nag TRUE and tcrit to the last output point required in a prior
call to nag_ode_ivp_adams_setup (d02qwc) and then set tout appropriately for each output point in turn
in the call to nag_ode_ivp_adams_roots (d02qfc).

The structure opt will contain pointers which have been allocated memory by calls to
nag_ode_ivp_adams_setup (d02qwc). This al located memory is then accessed by
nag_ode_ivp_adams_roots (d02qfc) and, if required, nag_ode_ivp_adams_interp (d02qzc). When all
calls to these functions have been completed the function nag_ode_ivp_adams_free (d02qyc) may be
called to free memory allocated to the structure.

10 Example

We solve the equation

y00 ¼ �y; y 0ð Þ ¼ 0; y0 0ð Þ ¼ 1

reposed as

y01 ¼ y2

y02 ¼ �y1

over the range 0; 10:0½ � with initial conditions y1 ¼ 0:0 and y2 ¼ 1:0 using vector error control
(vectol ¼ Nag TRUE) and computation of the solut ion at tout ¼ 10:0 with tcrit ¼ 10:0
(crit ¼ Nag TRUE). Also, we use nag_ode_ivp_adams_roots (d02qfc) to locate the positions where
y1 ¼ 0:0 or where the first component has a turning point, that is y01 ¼ 0:0.

d02 – Ordinary Differential d02qfc

Mark 24 d02qfc.7

../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qzc.pdf
../D02/d02qyc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf
../D02/d02qwc.pdf

10.1 Program Text

/* nag_ode_ivp_adams_roots (d02qfc) Example Program.
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
* Mark 7 revised, 2001.
* Mark 8 revised, 2004.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd02.h>

#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL ftry02(Integer neqf, double x, const double y[],

double yp[], Nag_User *comm);
static double NAG_CALL gtry02(Integer neqf, double x, const double y[],

const double yp[], Integer k, Nag_User *comm);
#ifdef __cplusplus
}
#endif

#define NEQF 2
#define NEQG 2
int main(void)
{

static Integer use_comm[2] = {1, 1};
Nag_Boolean alter_g, crit, one_step, sophist, vectol;
Integer exit_status = 0, i, max_step, neqf, neqg;
NagError fail;
Nag_ODE_Adams opt;
Nag_Start state;
Nag_User comm;
double *atol = 0, *rtol = 0, t, tcrit, tout, *y = 0;

INIT_FAIL(fail);

printf("nag_ode_ivp_adams_roots (d02qfc) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.p = (Pointer)

neqf = NEQF;
neqg = NEQG;
if (neqf < 1)

{
exit_status = 1;
return exit_status;

}
else

{
if (!(y = NAG_ALLOC(neqf, double)) ||

!(atol = NAG_ALLOC(neqf, double)) ||
!(rtol = NAG_ALLOC(neqf, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}

tcrit = 10.0;
state = Nag_NewStart;
vectol = Nag_TRUE;
one_step = Nag_FALSE;
crit = Nag_TRUE;

d02qfc NAG Library Manual

d02qfc.8 Mark 24

max_step = 0;
sophist = Nag_TRUE;
for (i = 0; i <= 1; ++i)

{
rtol[i] = 0.0001;
atol[i] = 1e-06;

}

/* nag_ode_ivp_adams_setup (d02qwc).
* Setup function for nag_ode_ivp_adams_roots (d02qfc)
*/

nag_ode_ivp_adams_setup(&state, neqf, vectol, atol, rtol, one_step, crit,
tcrit, 0.0, max_step, neqg, &alter_g, sophist, &opt,
&fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_ode_ivp_adams_setup (d02qwc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

t = 0.0;
tout = tcrit;
y[0] = 0.0;
y[1] = 1.0;

do
{

/* nag_ode_ivp_adams_roots (d02qfc).
* Ordinary differential equation solver using Adams method
* (sophisticated use)
*/

nag_ode_ivp_adams_roots(neqf, ftry02, &t, y, tout, gtry02,
&comm, &opt, &fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_ode_ivp_adams_roots (d02qfc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

if (opt.root)
{

printf("\nRoot at %14.5e\n", t);
printf("for event equation %1ld", opt.index);
printf(" with type %1ld", opt.type);
printf(" and residual %14.5e\n", opt.resids[opt.index-1]);

printf(" Y(1) = %14.5e Y’(1) = %14.5e\n", y[0], opt.yp[0]);

for (i = 1; i <= neqg; ++i)
{

if (i != opt.index && opt.events[i-1] != 0)
{

printf("and also for event equation %1ld", i);
printf(" with type %1ld", opt.events[i-1]);
printf(" and residual %14.5e\n", opt.resids[i-1]);

}
}

}
} while (opt.tcurr < tout && opt.root);

/* Free the memory which was allocated by
* nag_ode_ivp_adams_setup (d02qwc) to the pointers inside opt.
*/

/* nag_ode_ivp_adams_free (d02qyc).
* Freeing function for use with nag_ode_ivp_adams_roots (d02qfc)
*/

d02 – Ordinary Differential d02qfc

Mark 24 d02qfc.9

nag_ode_ivp_adams_free(&opt);
END:
NAG_FREE(y);
NAG_FREE(atol);
NAG_FREE(rtol);
return exit_status;

}

static void NAG_CALL ftry02(Integer neqf, double x, const double y[], double
yp[], Nag_User *comm)

{
Integer *use_comm = (Integer *)comm->p;

if (use_comm[0])
{

printf("(User-supplied callback ftry02, first invocation.)\n");
use_comm[0] = 0;

}

yp[0] = y[1];
yp[1] = -y[0];

} /* ftry02 */

static double NAG_CALL gtry02(Integer neqf, double x, const double y[], double
const yp[], Integer k, Nag_User *comm)

{
Integer *use_comm = (Integer *)comm->p;

if (use_comm[1])
{

printf("(User-supplied callback gtry02, first invocation.)\n");
use_comm[1] = 0;

}

if (k == 1) return yp[0];
else return y[0];

} /* gtry02 */

10.2 Program Data

None.

10.3 Program Results

nag_ode_ivp_adams_roots (d02qfc) Example Program Results
(User-supplied callback ftry02, first invocation.)
(User-supplied callback gtry02, first invocation.)

Root at 0.00000e+00
for event equation 2 with type 1 and residual 0.00000e+00
Y(1) = 0.00000e+00 Y’(1) = 1.00000e+00

Root at 1.57076e+00
for event equation 1 with type 1 and residual -5.90726e-16
Y(1) = 1.00003e+00 Y’(1) = -5.90726e-16

Root at 3.14151e+00
for event equation 2 with type 1 and residual -1.28281e-16
Y(1) = -1.28281e-16 Y’(1) = -1.00012e+00

Root at 4.71228e+00
for event equation 1 with type 1 and residual 3.59623e-16
Y(1) = -1.00010e+00 Y’(1) = 3.59623e-16

Root at 6.28306e+00
for event equation 2 with type 1 and residual 2.47333e-15
Y(1) = 2.47333e-15 Y’(1) = 9.99979e-01

d02qfc NAG Library Manual

d02qfc.10 Mark 24

Root at 7.85379e+00
for event equation 1 with type 1 and residual -3.20716e-15
Y(1) = 9.99970e-01 Y’(1) = -3.20716e-15

Root at 9.42469e+00
for event equation 2 with type 1 and residual -2.90637e-15
Y(1) = -2.90637e-15 Y’(1) = -9.99854e-01

d02 – Ordinary Differential d02qfc

Mark 24 d02qfc.11 (last)

	d02qfc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Shampine and Gordon (1975)
	Shampine and Watts (1979)
	Watts (1985)

	5 Arguments
	neqf
	fcn
	neqf
	x
	y
	f
	comm
	p

	t
	y
	tout
	g
	neqf
	x
	y
	yp
	k
	comm
	p

	comm
	p

	opt
	root
	index
	type
	events
	resids
	yp
	tcurr
	hlast
	hnext
	ord_last
	ord_next
	nsuccess
	nfail
	tolfac

	fail

	6 Error Indicators and Warnings
	NE_DIRECTION_CHANGE
	NE_MAX_STEP
	NE_NEQF
	NE_NO_G_FUN
	NE_NO_SETUP
	NE_ODE_TOL
	NE_SETUP_ERROR
	NE_SINGULAR_POINT
	NE_STIFF_PROBLEM
	NE_T_CHANGED
	NE_T_SAME_TOUT
	NE_TOUT_TCRIT
	NE_WEIGHT_ZERO

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

