
NAG Library Function Document

nag_ode_ivp_rk_setup (d02pvc)

1 Purpose

nag_ode_ivp_rk_setup (d02pvc) is a setup function which must be called prior to the first call of either
of the integration functions nag_ode_ivp_rk_range (d02pcc) and nag_ode_ivp_rk_onestep (d02pdc).

2 Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_ivp_rk_setup (Integer neq, double tstart, const double ystart[],
double tend, double tol, const double thres[], Nag_RK_method method,
Nag_RK_task task, Nag_ErrorAssess errass, double hstart,
Nag_ODE_RK *opt, NagError *fail)

3 Description

nag_ode_ivp_rk_setup (d02pvc) and its associated functions (nag_ode_ivp_rk_range (d02pcc),
nag_ode_ivp_rk_onestep (d02pdc), nag_ode_ivp_rk_reset_tend (d02pwc), nag_ode_ivp_rk_interp
(d02pxc), nag_ode_ivp_rk_errass (d02pzc)) solve the initial value problem for a first order system of
ordinary differential equations. The functions, based on Runge–Kutta methods and derived from
RKSUITE (Brankin et al. (1991)) integrate

y0 ¼ f t; yð Þ given y t0ð Þ ¼ y0

where y is the vector of neq solution components and t is the independent variable.

The integration proceeds by steps from the initial point t0 towards the final point tf . An approximate
solution y is computed at each step. For each component yi; i ¼ 1; 2; . . . ;neq the error made in the step,
i.e., the local error, is estimated. The step size is chosen automatically so that the integration will
proceed efficiently while keeping this local error estimate smaller than a tolerance that you specify by
means of arguments tol and thres.

nag_ode_ivp_rk_range (d02pcc) can be used to solve the ‘usual task’, namely integrating the system of
differential equations to obtain answers at points you specify. nag_ode_ivp_rk_onestep (d02pdc) is used
for all more ‘complicated tasks’.

You should consider carefully how you want the local error to be controlled. Essentially the code uses
relative local error control, with tol being the desired relative accuracy. For reliable computation, the
code must work with approximate solutions that have some correct digits, so there is an upper bound on
the value you can specify for tol. It is impossible to compute a numerical solution that is more accurate
than the correctly rounded value of the true solution, so you are not allowed to specify a tol that is too
small for the precision you are using. The magnitude of the local error in yi on any step will not be
greater than tol�max �i; thres½i� 1�ð Þ where �i is an average magnitude of yi over the step. If
thres½i� 1� is smaller than the current value of �i, this is a relative error test and tol indicates how many
significant digits you want in yi. If thres½i� 1� is larger than the current value of �i, this is an absolute
error test with tolerance tol� thres½i� 1�. Relative error control is the recommended mode of operation,
but pure relative error control, thres½i� 1� ¼ 0:0, is not permitted. See Section 10 for further information
about error control.

nag_ode_ivp_rk_range (d02pcc) and nag_ode_ivp_rk_onestep (d02pdc) control local error rather than
the true (global) error, the difference between the numerical and true solution. Control of the local error
controls the true error indirectly. Roughly speaking, the code produces a solution that satisfies the
differential equation with a discrepancy bounded in magnitude by the error tolerance. What this implies
about how close the numerical solution is to the true solution depends on the stability of the problem.
Most practical problems are at least moderately stable, and the true error is then comparable to the error

d02 – Ordinary Differential d02pvc

Mark 24 d02pvc.1

../D02/d02pcc.pdf
../D02/d02pdc.pdf
../D02/d02pcc.pdf
../D02/d02pdc.pdf
../D02/d02pwc.pdf
../D02/d02pxc.pdf
../D02/d02pxc.pdf
../D02/d02pzc.pdf
../D02/d02pcc.pdf
../D02/d02pdc.pdf
../D02/d02pcc.pdf
../D02/d02pdc.pdf


tolerance. To judge the accuracy of the numerical solution, you could reduce tol substantially, e.g., use
0:1� tol, and solve the problem again. This will usually result in a rather more accurate solution, and
the true error of the first integration can be estimated by comparison. Alternatively, a global error
assessment can be computed automatically using the argument errass. Because indirect control of the
true error by controlling the local error is generally satisfactory and because both ways of assessing true
errors cost twice, or more, the cost of the integration itself, such assessments are used mostly for spot
checks, selecting appropriate tolerances for local error control, and exploratory computations.

nag_ode_ivp_rk_range (d02pcc) and nag_ode_ivp_rk_onestep (d02pdc) each implement three Runge–
Kutta formula pairs, and you must select one for the integration. The best choice for method depends on
the problem. The order of accuracy is 3, 5, 8, corresponding to method ¼ Nag RK 2 3, Nag RK 4 5 or
Nag RK 7 8 respectively. As a rule, the lower the value of tol, the higher the order of accuracy of the
method. If the components thres are small enough that you are effectively specifying relative error
control, experience suggests

tol efficient method
10�2 � 10�4 Nag RK 2 3

10�3 � 10�6 Nag RK 4 5

10�5 � Nag RK 7 8

The overlap in the ranges of tolerances appropriate for a given method merely reflects the dependence of
efficiency on the problem being solved. Making tol smaller will normally make the integration more
expensive. However, in the range of tolerances appropriate to a method, the increase in cost is modest.
There are situations for which one method, or even this kind of code, is a poor choice. You should not
specify a very small thres½i� 1�, when the ith solution component might vanish. In particular, you
should not do this when yi ¼ 0:0. If you do, the code will have to work hard with any method to
compute significant digits, but method ¼ Nag RK 2 3 is a particularly poor choice in this situation. All
three methods are inefficient when the problem is ‘stiff’. If it is only mildly stiff, you can solve it with
acceptable efficiency with method ¼ Nag RK 2 3, but if it is moderately or very stiff, a code designed
specifically for such problems will be much more efficient. The higher the order of accuracy of the
method, the more smoothness is required of the solution for the method to be efficient.

When assessment of the true (global) error is requested, this error assessment is updated at each step. Its
value can be obtained at any time by a call to nag_ode_ivp_rk_errass (d02pzc). The code monitors the
computation of the global error assessment and reports any doubts it has about the reliability of the
results. The assessment scheme requires some smoothness of f t; yð Þ, and it can be deceived if f is
insufficiently smooth. At very crude tolerances the numerical solution can become so inaccurate that it is
impossible to continue assessing the accuracy reliably. At very stringent tolerances the effects of finite
precision arithmetic can make it impossible to assess the accuracy reliably. The cost of this is roughly
twice the cost of the integration itself with method ¼ Nag RK 4 5 or Nag RK 7 8 and three times with
method ¼ Nag RK 2 3.

The first step of the integration is critical because it sets the scale of the problem. The integrator will find
a starting step size automatically if you set the variable hstart to 0.0. Automatic selection of the first step
is so effective that you should normally use it. Nevertheless, you might want to specify a trial value for
the first step to be certain that the code recognizes the scale on which phenomena occur near the initial
point. Also, automatic computation of the first step size involves some cost, so supplying a good value
for this step size will result in a less expensive start. If you are confident that you have a good value,
provide it in the variable hstart.

4 References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge–Kutta codes for the
initial value problems for ODEs SoftReport 91-S1 Southern Methodist University

d02pvc NAG Library Manual

d02pvc.2 Mark 24

../D02/d02pcc.pdf
../D02/d02pdc.pdf
../D02/d02pzc.pdf


5 Arguments

1: neq – Integer Input

On entry: the number of ordinary differential equations in the system.

Constraint: neq � 1.

2: tstart – double Input

On entry: the initial value of the independent variable, t0.

3: ystart½neq� – const double Input

On entry: y0, the initial values of the solution, yi for i ¼ 1; 2; . . . ; neq, at t0.

4: tend – double Input

On entry: the final value of the independent variable, tf , at which the solution is required. tstart
and tend together determine the direction of integration.

Constraint: tend must be distinguishable from tstart for the method and the precision of the
machine being used.

5: tol – double Input

On entry: a relative error tolerance.

Constraint: 10:0�machine precision � tol � 0:01.

6: thres½neq� – const double Input

On entry: a vector of thresholds.

Constraint: thres½i� 1� �
ffiffi

�
p

, where � is the smallest possible machine number (see X02AMC).

7: method – Nag_RK_method Input

On entry: the Runge–Kutta method to be used.

method ¼ Nag RK 2 3
A 2(3) pair is used.

method ¼ Nag RK 4 5
A 4(5) pair is used.

method ¼ Nag RK 7 8
A 7(8) pair is used.

Constraint: method ¼ Nag RK 2 3, Nag RK 4 5 or Nag RK 7 8.

8: task – Nag_RK_task Input

On entry: determines whether the usual integration task is to be performed using
nag_ode_ivp_rk_range (d02pcc) or a more complicated task is to be performed using
nag_ode_ivp_rk_onestep (d02pdc).

task ¼ Nag RK range
nag_ode_ivp_rk_range (d02pcc) is to be used for the integration.

task ¼ Nag RK onestep
nag_ode_ivp_rk_onestep (d02pdc) is to be used for the integration.

Constraint: task ¼ Nag RK range or Nag RK onestep.

d02 – Ordinary Differential d02pvc

Mark 24 d02pvc.3

../D02/d02pcc.pdf
../D02/d02pdc.pdf
../D02/d02pcc.pdf
../D02/d02pdc.pdf


9: errass – Nag_ErrorAssess Input

On entry: specifies whether a global error assessment is to be computed with the main integration.
errass ¼ Nag ErrorAssess on specifies that it is.

Constraint: errass ¼ Nag ErrorAssess on or Nag ErrorAssess off.

10: hstart – double Input

On entry: a value for the size of the first step in the integration to be attempted. The absolute
value of hstart is used with the direction being determined by tstart and tend. The actual first
step taken by the integrator may be different to hstart if the underlying algorithm determines that
hstart is unsuitable.

hstart ¼ 0:0
The size of the first step is computed automatically.

Suggested value: hstart ¼ 0:0.

11: opt – Nag_ODE_RK * Output

On exit: the structure of type Nag_ODE_RK initialized to appropriate values and to be passed
unchanged to the in tegra t ion func t ions nag_ode_ivp_rk_range (d02pcc) or
nag_ode_ivp_rk_onestep (d02pdc). Memory will have been allocated by nag_ode_ivp_rk_setup
(d02pvc). This memory is used by nag_ode_ivp_rk_range (d02pcc), nag_ode_ivp_rk_onestep
(d02pdc), nag_ode_ivp_rk_interp (d02pxc), nag_ode_ivp_rk_reset_tend (d02pwc) and
nag_ode_ivp_rk_errass (d02pzc). The library function nag_ode_ivp_rk_free (d02ppc) is provided
so that this memory can be freed when the integration is complete or the setup function
nag_ode_ivp_rk_setup (d02pvc) is to be re-entered.

12: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_2_REAL_ARG_EQ

On entry, tstart ¼ valueh i while tend ¼ valueh i. These arguments must satisfy tstart 6¼ tend.

NE_2_REAL_ARG_TOO_CLOSE

On entry, tend ¼ valueh i while tstart ¼ valueh i. These arguments must satisfy
abs tend� tstartð Þ � valueh i.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument errass had an illegal value.

On entry, argument method had an illegal value.

On entry, argument task had an illegal value.

NE_INT_ARG_LT

On entry, neq ¼ valueh i.
Constraint: neq � 1.

d02pvc NAG Library Manual

d02pvc.4 Mark 24

../D02/d02pcc.pdf
../D02/d02pdc.pdf
../D02/d02pcc.pdf
../D02/d02pdc.pdf
../D02/d02pdc.pdf
../D02/d02pxc.pdf
../D02/d02pwc.pdf
../D02/d02pzc.pdf
../D02/d02ppc.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf


NE_REAL_ARRAY_INPUT

On entry, thres½ valueh i� ¼ valueh i.
Constraint: thres½ valueh i� � valueh i.

NE_REAL_RANGE_CONS

On entry, tol ¼ valueh i and 10�machine precision ¼ valueh i. The argument tol must satisfy
10�machine precision � tol � 0:01.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The value of the argument tend may be reset during the integration without the overhead associated with
a complete restart; this can be achieved by a call to nag_ode_ivp_rk_reset_tend (d02pwc).

It is often the case that a solution component yi is of no interest when it is smaller in magnitude than a
certain threshold. You can inform the code of this by setting thres½i� 1� to this threshold. In this way
you avoid the cost of computing significant digits in yi when only the fact that it is smaller than the
threshold is of interest. This matter is important when yi vanishes, and in particular, when the initial
value ystart½i� 1� vanishes. An appropriate threshold depends on the general size of yi in the course of
the integration. Physical reasoning may help you select suitable threshold values. If you do not know
what to expect of y, you can find out by a preliminary integration using nag_ode_ivp_rk_range (d02pcc)
with nominal values of thres. As nag_ode_ivp_rk_range (d02pcc) steps from t0 towards tf for each
i ¼ 1; 2; . . . ; neq it forms YMAX i� 1½ �, the largest magnitude of yi computed at any step in the
integration so far. Using this you can determine more appropriate values for thres for an accurate
integration. You might, for example, take thres½i� 1� to be 10:0� machine precision times the final
value of YMAX i� 1½ �.

10 Example

See example programs for nag_ode_ivp_rk_range (d02pcc), nag_ode_ivp_rk_onestep (d02pdc),
nag_ode_ivp_rk_interp (d02pxc), nag_ode_ivp_rk_reset_tend (d02pwc) and nag_ode_ivp_rk_errass
(d02pzc).

d02 – Ordinary Differential d02pvc

Mark 24 d02pvc.5 (last)

../D02/d02pwc.pdf
../D02/d02pcc.pdf
../D02/d02pcc.pdf
../D02/d02pcc.pdf
../D02/d02pdc.pdf
../D02/d02pxc.pdf
../D02/d02pwc.pdf
../D02/d02pzc.pdf
../D02/d02pzc.pdf

	d02pvc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Brankin et al. (1991)

	5 Arguments
	neq
	tstart
	ystart
	tend
	tol
	thres
	method
	task
	errass
	hstart
	opt
	fail

	6 Error Indicators and Warnings
	NE_2_REAL_ARG_EQ
	NE_2_REAL_ARG_TOO_CLOSE
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT_ARG_LT
	NE_REAL_ARRAY_INPUT
	NE_REAL_RANGE_CONS

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction



