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1 Scope of the Chapter

This chapter is concerned with the numerical solution of ordinary differential equations. There are two
main types of problem: those in which all boundary conditions are specified at one point (initial value
problems), and those in which the boundary conditions are distributed between two or more points
(boundary value problems and eigenvalue problems). Functions are available for initial value problems,
two-point boundary value problems.

2 Background to the Problems

For most of the functions in this chapter a system of ordinary differential equations must be written in
the form

y01 ¼ f1 x; y1; y2; . . . ; ynð Þ;

y02 ¼ f2 x; y1; y2; . . . ; ynð Þ;
..
.

y0n ¼ fn x; y1; y2; . . . ; ynð Þ;

that is the system must be given in first-order form. The n dependent variables (also, the solution)
y1; y2; . . . ; yn are functions of the independent variable x, and the differential equations give expressions

for the first derivatives y0i ¼
dyi
dx in terms of x and y1; y2; . . . ; yn. For a system of n first-order equations, n

associated boundary conditions are usually required to define the solution.

A more general system may contain derivatives of higher order, but such systems can almost always be
reduced to the first-order form by introducing new variables. For example, suppose we have the third-
order equation

z000 þ zz00 þ k l� z02
� �

¼ 0:

We write y1 ¼ z, y2 ¼ z0, y3 ¼ z00, and the third-order equation may then be written as the system of
first-order equations

y01 ¼ y2

y02 ¼ y3

y03 ¼ �y1y3 � k l� y2
2

� �
:

For this system n ¼ 3 and we require 3 boundary conditions in order to define the solution. These
conditions must specify values of the dependent variables at certain points. For example, we have an
initial value problem if the conditions are

y1 ¼ 0 at x ¼ 0
y2 ¼ 0 at x ¼ 0
y3 ¼ 0:1 at x ¼ 0:

These conditions would enable us to integrate the equations numerically from the point x ¼ 0 to some
specified end point. We have a boundary value problem if the conditions are

y1 ¼ 0 at x ¼ 0
y2 ¼ 0 at x ¼ 0
y2 ¼ 1 at x ¼ 10:

These conditions would be sufficient to define a solution in the range 0 � x � 10, but the problem could
not be solved by direct integration (see Section 2.2). More general boundary conditions are permitted in
the boundary value case.
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2.1 Initial Value Problems

To solve first-order systems, initial values of the dependent variables yi, for i ¼ 1; 2; . . . ; n, must be
supplied at a given point, a. Also a point, b, at which the values of the dependent variables are required,
must be specified. The numerical solution is then obtained by a step-by-step calculation which
approximates values of the variables yi, for i ¼ 1; 2; . . . ; n, at finite intervals over the required range
a; b½ �. The functions in this chapter adjust the step length automatically to meet specified accuracy

tolerances. Although the accuracy tests used are reliable over each step individually, in general an
accuracy requirement cannot be guaranteed over a long range. For many problems there may be no
serious accumulation of error, but for unstable systems small perturbations of the solution will often lead
to rapid divergence of the calculated values from the true values. A simple check for stability is to carry
out trial calculations with different tolerances; if the results differ appreciably the system is probably
unstable. Over a short range, the difficulty may possibly be overcome by taking sufficiently small
tolerances, but over a long range it may be better to try to reformulate the problem.

A special class of initial value problems are those for which the solutions contain rapidly decaying
transient terms. Such problems are called stiff; an alternative way of describing them is to say that

certain eigenvalues of the Jacobian matrix
@fi
@yj

� �
have large negative real parts when compared to

others. These problems require special methods for efficient numerical solution; the methods designed
for non-stiff problems when applied to stiff problems tend to be very slow, because they need small step
lengths to avoid numerical instability. A full discussion is given in Hall and Watt (1976) and a
discussion of the methods for stiff problems is given in Berzins et al. (1988).

2.2 Boundary Value Problems

In general, a system of nonlinear differential equations with boundary conditions at two or more points
cannot be guaranteed to have a solution. The solution, if it exists, has to be determined iteratively. A
comprehensive treatment of the numerical solution of boundary value problems can be found in Ascher
et al. (1988) and Keller (1992). The methods for this chapter are discussed in Ascher et al. (1979),
Ascher and Bader (1987) and Gladwell (1987).

2.2.1 Collocation methods

In the collocation method, the solution components are approximated by piecewise polynomials on a
mesh. The coefficients of the polynomials form the unknowns to be computed. The approximation to the
solution must satisfy the boundary conditions and the differential equations at collocation points in each
mesh sub-interval. A modified Newton method is used to solve the nonlinear equations. The mesh is
refined by trying to equidistribute the estimated error over the whole interval. An initial estimate of the
solution across the mesh is required.

2.2.2 Finite difference methods

If a boundary value problem seems insoluble by the above method and a good estimate for the solution
of the problem is known at all points of the range then a finite difference method may be used. Finite
difference equations are set up on a mesh of points and estimated values for the solution at the grid
points are chosen. Using these estimated values as starting values a Newton iteration is used to solve the
finite difference equations. The accuracy of the solution is then improved by deferred corrections or the
addition of points to the mesh or a combination of both. Good initial estimates of the solution may be
required in some cases and the method is unlikely to be successful when the solution varies very rapidly
over short ranges. A discussion is given in Chapters 9 and 11 of Gladwell and Sayers (1980) and
Chapter 4 of Gladwell (1979a).

3 Recommendations on Choice and Use of Available Functions

There are no functions which deal directly with complex equations. These may however be transformed
to larger systems of real equations of the required form. Split each equation into its real and imaginary
parts and solve for the real and imaginary parts of each component of the solution. Whilst this process
doubles the size of the system and may not always be appropriate it does make available for use the full
range of functions provided presently.
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3.1 Initial Value Problems

In general, for non-stiff first-order systems, Runge–Kutta (RK) functions should be used. For the usual
requirement of integrating across a range the appropriate functions are nag_ode_ivp_rkts_range (d02pec)
and nag_ode_ivp_rkts_setup (d02pqc); nag_ode_ivp_rkts_setup (d02pqc) is a setup function for
nag_ode_ivp_rkts_range (d02pec). For more complex tasks there are a further five related functions:
nag_ode_ivp_rkts_onestep (d02pfc), nag_ode_ivp_rkts_reset_tend (d02prc), nag_ode_ivp_rkts_interp
(d02psc), nag_ode_ivp_rkts_diag (d02ptc) and nag_ode_ivp_rkts_errass (d02puc). When a system is to
be integrated over a long range or with relatively high accuracy requirements the variable-order,
variable-step Adams’ codes may be more efficient. The appropriate function in this case is
nag_ode_ivp_adams_gen (d02cjc). For more complex tasks using an Adams’ code there are a further
four related functions: nag_ode_ivp_adams_roots (d02qfc), nag_ode_ivp_adams_setup (d02qwc),
nag_ode_ivp_adams_free (d02qyc) and nag_ode_ivp_adams_interp (d02qzc).

For stiff systems, that is those which usually contain rapidly decaying transient components, the
Backward Differentiation Formula (BDF) variable-order, variable-step codes should be used. The
appropriate functions in this case are: the simple driver nag_ode_ivp_bdf_gen (d02ejc), or the more
comprehensive nag_dae_ivp_dassl_gen (d02nec), based on the DASSL implementation (see Brenan et al.
(1996)), and its related functions nag_dae_ivp_dassl_cont (d02mcc), nag_dae_ivp_dassl_setup (d02mwc)
and nag_dae_ivp_dassl_linalg (d02npc).

If you are not sure how to classify a problem, you are advised to perform some preliminary calculations
with nag_ode_ivp_rkts_range (d02pec), which can indicate whether the system is stiff. We also advise
per forming some tr ia l ca lcula t ions wi th nag_ode_ivp_rkts_range (d02pec) (RK),
nag_ode_ivp_adams_gen (d02cjc) (Adams) and nag_ode_ivp_bdf_gen (d02ejc) (BDF) so as to determine
which type of function is best applied to the problem. The conclusions should be based on the computer
time used and the number of evaluations of the derivative function fi. See Gladwell (1979b) for more
details.

3.1.1 Runge–Kutta functions

The basic RK function is nag_ode_ivp_rkts_onestep (d02pfc) which takes one integration step at a time.
An alternative is nag_ode_ivp_rkts_range (d02pec), which provides output at user-specified points. The
initialization of either nag_ode_ivp_rkts_range (d02pec) or nag_ode_ivp_rkts_onestep (d02pfc) and the
setting of optional inputs, including choice of method, is made by a call to the setup function
nag_ode_ivp_rkts_setup (d02pqc). Optional output information about error assessment, can be obtained
by calls to the function nag_ode_ivp_rkts_errass (d02puc) while integration statistics are returned by the
diagnostic function nag_ode_ivp_rkts_diag (d02ptc). nag_ode_ivp_rkts_interp (d02psc) may be used to
interpolate on information produced by nag_ode_ivp_rkts_onestep (d02pfc) to give solution and
derivative values between the integration points. nag_ode_ivp_rkts_reset_tend (d02prc) may be used to
reset the end of the integration range whilst integrating using nag_ode_ivp_rkts_onestep (d02pfc).

3.1.2 Adams’ functions

The general Adams’ variable-order variable-step function is nag_ode_ivp_adams_roots (d02qfc), which
provides a choice of automatic error control and the option of a sophisticated root-finding technique. The
initialization of nag_ode_ivp_adams_roots (d02qfc) and the setting of optional inputs is made by a call
to the setup function nag_ode_ivp_adams_setup (d02qwc). nag_ode_ivp_adams_interp (d02qzc) may be
used to interpolate on information produced by nag_ode_ivp_adams_roots (d02qfc) to give solution and
derivative values between the integration points.

There is a simple driving function nag_ode_ivp_adams_gen (d02cjc), which integrates a system over a
range and, optionally, computes intermediate output and/or determines the position where a specified
function of the solution is zero.

3.1.3 BDF functions

General functions for implicit ordinary differential equations with options for forms of numerical linear
algebra are provided by a suite of functions using the DASSL implementation (see Brenan et al. (1996))
of the BDF. The main solver in this suite is nag_dae_ivp_dassl_gen (d02nec) is designed for solving
systems of the form,
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F t; y; y0ð Þ ¼ 0:

These formulations permits solution of differential/algebraic systems (DAEs). Additionally
nag_dae_ivp_dassl_gen (d02nec) can be used to solve difficult algebraic problems by continuation;
for example, the nonlinear algebraic problem

f xð Þ ¼ 0

can be solved by integrating solutions of

f xð Þ þ 1� tð Þg xð Þ ¼ 0

where the solution to

f xð Þ þ g xð Þ ¼ 0

is known.

Options for the solver must be supplied as arguments in an initial call to the setup function
nag_dae_ivp_dassl_setup (d02mwc); the Jacobian of the system to be solved can be considered to have a
banded structure by a call to nag_dae_ivp_dassl_linalg (d02npc) prior to calling the solver function; and
integration can be continued by a call to nag_dae_ivp_dassl_cont (d02mcc) between calls to the solver
nag_dae_ivp_dassl_gen (d02nec).

There is a simple driving function nag_ode_ivp_bdf_gen (d02ejc), which integrates a system over a
range and, optionally, computes intermediate output and/or determines the position where a specified
function of the solution is zero. To solve the equations arising in the BDF method an approximation to

the Jacobian
@fi
@yj

� �
is required. This approximation can be calculated internally but you may supply an

analytic expression. In most cases supplying a correct analytic expression will reduce the amount of
computer time used.

3.2 Boundary Value Problems

In general, for a nonlinear system of mixed order with separated boundary conditions, the collocation
method (nag_ode_bvp_coll_nlin_solve (d02tlc) and its associated functions) can be used. Problems of a
more general nature can often be transformed into a suitable form for treatment by
nag_ode_bvp_coll_nlin_solve (d02tlc), for example nonseparated boundary conditions or problems with
unknown arguments (see Section 9 in nag_ode_bvp_coll_nlin_setup (d02tvc) for details).

For simple boundary value problems with assigned boundary values you may prefer to use a code based
on the finite difference method for which there is a function with simple calling sequence (
nag_ode_bvp_fd_nonlin_fixedbc (d02gac)).

For difficult boundary value problems, where you need to exercise some control over the calculation, and
where the collocation method proves unsuccessful, you may wish to try the alternative method of finite
differences (nag_ode_bvp_fd_nonlin_gen (d02rac)).

Note that it is not possible to make a fully automatic boundary value function, and you should be
prepared to experiment with different starting values or a different function if the problem is at all
difficult.

3.2.1 Finite difference methods

nag_ode_bvp_fd_nonlin_fixedbc (d02gac) may be used for simple boundary value problems with
assigned boundary values.

You may find that convergence is difficult to achieve using nag_ode_bvp_fd_nonlin_fixedbc (d02gac)
since only specifying the unknown boundary values and the position of the finite difference mesh is
permitted. In such cases you may use nag_ode_bvp_fd_nonlin_gen (d02rac), which permits specification
of an initial estimate for the solution at all mesh points and allows the calculation to be influenced in
other ways too. nag_ode_bvp_fd_nonlin_gen (d02rac) is designed to solve a general nonlinear two-point
boundary value problem with nonlinear boundary conditions.
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A function, nag_ode_bvp_fd_lin_gen (d02gbc), is also supplied specifically for the general linear two-
point boundary value problem written in a standard ‘textbook’ form.

You are advised to use interpolation functions from Chapter e01 to obtain solution values at points not
on the final mesh.

3.2.2 Chebyshev integration method

The Chebyshev integration method is an implementation of the Chebyshev collocation method which is
fully described and compared against other implementations in Muite (2010). nag_ode_bvp_ps_lin_solve
(d02uec) solves a linear constant coefficient boundary value problem using the Chebyshev integration
formulation on a Chebyshev Gauss–Lobatto grid and solving in the coefficient space. The required
Chebyshev Gauss–Lobatto grid points on a given arbitrary interval a; b½ � can first be generated using
nag_ode_bvp_ps_lin_cgl_grid (d02ucc). Then nag_ode_bvp_ps_lin_coeffs (d02uac) obtains the Cheby-
shev coefficients for the right-hand side (of system) function discretized on the obtained Chebyshev
Gauss–Lobatto grid. nag_ode_bvp_ps_lin_solve (d02uec) then solves the problem in Chebyshev
coefficient space using the integration formulation. Finally nag_ode_bvp_ps_lin_cgl_vals (d02ubc)
evaluates the solution (or one of its lower order derivatives) from the set of Chebyshev coefficients
returned by nag_ode_bvp_ps_lin_solve (d02uec) on the Chebyshev Gauss–Lobatto grid on a; b½ �. The set
of functions can be used to solve up to fourth order boundary value problems.

3.3 Summary of Recommended Functions

Problem Function

RK Method Adams’ Method BDF Method

Initial Value Problems
Driver Functions

Integration over a range with optional intermediate output and optional
determination of position where a function of the solution becomes zero

d02cjc d02ejc

Integration of a range with intermediate output d02cjc d02ejc

Integration of a range until function of solution becomes zero d02cjc d02ejc

Comprehensive Integration Functions d02pec, d02pfc,
d02pqc, d02prc,

d02psc, d02ptc and
d02puc

d02qfc, d02qwc
and d02qzc

d02mcc, d02mwc,
d02nec and d02npc

Package for Solving Second-order Systems of Special Form

Boundary Value Problems
Collocation Method, Mixed Order

d02tlc, d02tvc, d02txc, d02tyc and d02tzc

Boundary Value Problems
Finite Difference Method

linear problem d02gbc

full nonlinear problem d02rac

Boundary Value Problems
Chebyshev Collocation, Integration Formulation

single linear equation d02uec with d02uac, d02ubc, d02ucc
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4 Decision Trees

Tree 1: Initial Value Problems

If the problem is not first order convert
to first order.
Is the problem known to be stiff?

yes
Is the system of the form y0 ¼ f x; yð Þ?

yes
d02ejc

no

d02mcc, d02mwc, d02nec and d02npc

no

Backward Difference Formula: d02ejc.
Adams’ method with driver function:

d02cjc
Adams’ method with comprehensive
suite: d02qfc, d02qwc, d02qyc and

d02qzc
BDF with comprehensive suite: d02mcc,

d02mwc, d02nec and d02npc
Runge–Kutta method: d02pec, d02pfc,
d02pqc, d02prc, d02psc, d02ptc and

d02puc

Tree 2: Boundary Value Problems

Is the problem simply of the form
y0 ¼ f x; yð Þ? yes

Are only boundary values to be
determined? yes

Finite differences: d02gac
Collocation: d02tlc

no

Finite differences: d02gbc
Collocation, piecewise polynomials:

d02tlc

no

Finite differences: d02rac
Collocation, piecewise polynomials:

d02tlc

5 Functionality Index

Differentiation of a function discretized on Chebyshev Gauss–Lobatto points
..... nag_ode_bvp_ps_lin_cgl_deriv (d02udc)

Linear constant coefficient boundary value problem,
Chebyshev spectral integration method,

Chebyshev coefficients generator for a function discretized on Chebyshev Gauss–Lobatto grid
..... nag_ode_bvp_ps_lin_coeffs (d02uac)

Chebyshev coefficients to function values on Chebyshev Gauss–Lobatto grid
..... nag_ode_bvp_ps_lin_cgl_vals (d02ubc)

Chebyshev Gauss–Lobatto grid generator ........................ nag_ode_bvp_ps_lin_cgl_grid (d02ucc)
Chebyshev integration solver for linear constant coefficient boundary value problem

..... nag_ode_bvp_ps_lin_solve (d02uec)
Clenshaw–Curtis quadrature weights generator at Chebyshev Gauss–Lobatto points

..... nag_ode_bvp_ps_lin_quad_weights (d02uyc)
Evaluation on uniform grid of function by Barycentric Lagrange interpolation

..... nag_ode_bvp_ps_lin_grid_vals (d02uwc)
value of kth Chebyshev polynomial ............................. nag_ode_bvp_ps_lin_cheb_eval (d02uzc)

System of first-order ordinary differential equations, initial value problems,
comprehensive integrator functions for stiff systems,

continuation to call nag_dae_ivp_dassl_gen (d02nec) ............. nag_dae_ivp_dassl_cont (d02mcc)
implicit ordinary differential equations coupled with algebraic equations,

banded Jacobian selector for DASSL integrator ............... nag_dae_ivp_dassl_linalg (d02npc)
DASSL integrator .................................................................. nag_dae_ivp_dassl_gen (d02nec)
integrator setup for DASSL .............................................. nag_dae_ivp_dassl_setup (d02mwc)

comprehensive integrator functions using Adams’ method with root-finding option,
diagnostic function for root-finding ........................................ nag_ode_ivp_adams_free (d02qyc)
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direct communication .............................................................. nag_ode_ivp_adams_roots (d02qfc)
interpolant .............................................................................. nag_ode_ivp_adams_interp (d02qzc)
setup function ....................................................................... nag_ode_ivp_adams_setup (d02qwc)

comprehensive integrator functions using Runge–Kutta methods,
diagnostic function ....................................................................... nag_ode_ivp_rkts_diag (d02ptc)
diagnostic function for global error assessment ....................... nag_ode_ivp_rkts_errass (d02puc)
interpolant .................................................................................. nag_ode_ivp_rkts_interp (d02psc)
over a range with intermediate output ...................................... nag_ode_ivp_rkts_range (d02pec)
over a step .............................................................................. nag_ode_ivp_rkts_onestep (d02pfc)
reset end of range ............................................................... nag_ode_ivp_rkts_reset_tend (d02prc)
setup function ............................................................................ nag_ode_ivp_rkts_setup (d02pqc)

simple driver functions,
variable-order variable-step Adams’ method,

until (optionally) a function of the solution is zero, with optional intermediate output
..... nag_ode_ivp_adams_gen (d02cjc)

variable-order variable-step backward differentiation formulae method for stiff systems,
until (optionally) a function of the solution is zero, with optional intermediate output

..... nag_ode_ivp_bdf_gen (d02ejc)

System of ordinary differential equations, boundary value problems,
comprehensive functions using a collocation technique,

continuation function ....................................................... nag_ode_bvp_coll_nlin_contin (d02txc)
diagnostic function .............................................................. nag_ode_bvp_coll_nlin_diag (d02tzc)
general nonlinear problem solver ....................................... nag_ode_bvp_coll_nlin_solve (d02tlc)
interpolation function ........................................................ nag_ode_bvp_coll_nlin_interp (d02tyc)
setup function .................................................................... nag_ode_bvp_coll_nlin_setup (d02tvc)

finite difference technique with deferred correction,
general linear problem ............................................................. nag_ode_bvp_fd_lin_gen (d02gbc)
general nonlinear problem, with continuation facility ....... nag_ode_bvp_fd_nonlin_gen (d02rac)
simple nonlinear problem ............................................. nag_ode_bvp_fd_nonlin_fixedbc (d02gac)

6 Auxiliary Functions Associated with Library Function Arguments

None.

7 Functions Withdrawn or Scheduled for Withdrawal

The following lists all those functions that have been withdrawn since Mark 23 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Function

Mark of
Withdrawal Replacement Function(s)

nag_ode_ivp_rk_range (d02pcc) 26 nag_ode_ivp_rkts_range (d02pec) and associated
d02p functions

nag_ode_ivp_rk_onestep (d02pdc) 26 nag_ode_ivp_rkts_onestep (d02pfc) and asso-
ciated d02p functions

nag_ode_ivp_rk_free (d02ppc) 26 No replacement required
nag_ode_ivp_rk_setup (d02pvc) 26 nag_ode_ivp_rkts_setup (d02pqc)
nag_ode_ivp_rk_reset_tend (d02pwc) 26 nag_ode_ivp_rkts_reset_tend (d02prc)
nag_ode_ivp_rk_interp (d02pxc) 26 nag_ode_ivp_rkts_interp (d02psc)
nag_ode_ivp_rk_errass (d02pzc) 26 nag_ode_ivp_rkts_errass (d02puc)
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