d01 — Quadrature d0luac

NAG Library Function Document
nag quad 1d gauss vec (d0luac)

1 Purpose

nag quad_ld gauss vec (dOluac) computes an estimate of the definite integral of a function of known
analytical form, using a Gaussian quadrature formula with a specified number of abscissae. Formulae are
provided for a finite interval (Gauss—Legendre), a semi-infinite interval (Gauss—Laguerre, rational
Gauss), and an infinite interval (Gauss—Hermite).

2 Specification

#include <nag.h>
#include <nagdO01l.h>

void nag_gquad_1ld_gauss_vec (Nag_QuadType quad_type, double a, double b,
Integer n,

void (*f) (const double x[], Integer nx, double fv[], Integer *iflag,
Nag_Comm *comm),

double *dinest, Nag_Comm *comm, NagError *fail)

3 Description
3.1 General

nag_quad 1d_gauss vec (d0luac) evaluates an estimate of the definite integral of a function f(z), over a
finite or infinite range, by n-point Gaussian quadrature (see Davis and Rabinowitz (1975), Froberg
(1970), Ralston (1965) or Stroud and Secrest (1966)). The integral is approximated by a summation of
the product of a set of weights and a set of function evaluations at a corresponding set of abscissae x;.
For adjusted weights, the function values correspond to the values of the integrand f, and hence the sum
will be

Zwif (2:)
i=1

where the w; are called the weights, and the x; the abscissae. A selection of values of n is available. (See
Section 5.)

Where applicable, normal weights may instead be used, in which case the corresponding weight function
w is factored out of the integrand as f(x) = w(x)g(x) and hence the sum will be

Zwlg(m)7
=1
where the normal weights w; = w;w(z;) are computed internally.

nag quad_1d gauss vec (dOluac) uses a vectorized f to evaluate the integrand or normalized integrand
at a set of abscissae, x;, for i = 1,2,...,n,. If adjusted weights are used, the integrand f(z;) must be
evaluated otherwise the normalized integrand g(z;) must be evaluated.

3.2 Both Limits Finite

b

f(z) dx.

The Gauss—Legendre weights and abscissae are used, and the formula is exact for any function of the
form:
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flx) = Zc,x‘

The formula is appropriate for functions which can be well approximated by such a polynomial over
[a, b]. Tt is inappropriate for functions with algebraic singularities at one or both ends of the interval, such

as (14+2)7"? on [~1,1].

3.3 One Limit Infinite

Aoof(a:) dx or /;f(:z:) dx.

Two quadrature formulae are available for these integrals.
(a) The Gauss—Laguerre formula is exact for any function of the form:

2n—1

flx)=et" Z cix'.

i=0

This formula is appropriate for functions decaying exponentially at infinity; the argument b should
be chosen if possible to match the decay rate of the function.
If the adjusted weights are selected, the complete integrand f(z) should be provided through f.

—bx

If the normal form is selected, the contribution of e™** is accounted for internally, and f should only

return g(x), where f(z) = e " g(x).

If b < 0 is supplied, the interval of integration will be [a,00). Otherwise if b > 0 is supplied, the
interval of integration will be (—o0, al.

(b) The rational Gauss formula is exact for any function of the form:

2n—1

2l . E 62n+|,7‘(l‘ + b)l
j : 1 1=0
xTr) = - =
f( ) — (.'17 + b)l (fL' + b)2n+l

This formula is likely to be more accurate for functions having only an inverse power rate of decay
for large x. Here the choice of a suitable value of b may be more difficult; unfortunately a poor
choice of b can make a large difference to the accuracy of the computed integral.

Only the adjusted form of the rational Gauss formula is available, and as such, the complete
integrand f(x) must be supplied in f.

If a+b <0, the interval of integration will be [a,00). Otherwise if a+b >0, the interval of
integration will be (—o0, a).

3.4 Both Limits Infinite

+00

f(x) de.

The Gauss—Hermite weights and abscissae are used, and the formula is exact for any function of the
form:

2n—1

f(Ji) _ e*b(.’lﬁf{l)z Zcixia
1=0

d0luac.? Mark 24



d01 — Quadrature d0luac

where b > 0. Again, for general functions not of this exact form, the argument b should be chosen to
match if possible the decay rate at + oo.

If the adjusted weights are selected, the complete integrand f(z) should be provided through f.

If the normal form is selected, the contribution of e~%@=0)" is accounted for internally, and f should only
return g(z), where f(x) = e‘b@‘”)Zg(x).

4 References

Davis P J and Rabinowitz P (1975) Methods of Numerical Integration Academic Press
Froberg C E (1970) Introduction to Numerical Analysis Addison—Wesley

Ralston A (1965) 4 First Course in Numerical Analysis pp. 87-90 McGraw—Hill
Stroud A H and Secrest D (1966) Gaussian Quadrature Formulas Prentice—Hall

S  Arguments
1: quad_type — Nag QuadType Input
On entry: indicates the quadrature formula.

quad_type = Nag_Quad_Gauss_Legendre
Gauss—Legendre quadrature on a finite interval, using normal weights.

quad_type = Nag_Quad_Gauss_Laguerre
Gauss—Laguerre quadrature on a semi-infinite interval, using normal weights.

quad_type = Nag_Quad_Gauss_Laguerre_Adjusted
Gauss—Laguerre quadrature on a semi-infinite interval, using adjusted weights.

quad_type = Nag_Quad_Gauss_Hermite
Gauss—Hermite quadrature on an infinite interval, using normal weights.

quad_type = Nag_Quad_Gauss_Hermite_Adjusted
Gauss—Hermite quadrature on an infinite interval, using adjusted weights.

quad_type = Nag_Quad_Gauss_Rational_Adjusted
Rational Gauss quadrature on a semi-infinite interval, using adjusted weights.

Constraint: quad_type = Nag_Quad_Gauss_Legendre, Nag_Quad_Gauss_Laguerre,
Nag_Quad_Gauss_Laguerre_Adjusted, Nag_Quad_Gauss_Hermite,
Nag_Quad_Gauss_Hermite_Adjusted or Nag_Quad_Gauss_Rational Adjusted.

2: a — double Input
b — double Input

On entry: the quantities a and b as described in the appropriate subsection of Section 3.
Constraints:
Rational Gauss: a +b # 0.0;
Gauss—Laguerre: b # 0.0;
Gauss—Hermite: b > 0.
4: n — Integer Input
On entry: n, the number of abscissae to be used.
Constraint: n =1, 2, 3,4, 5, 6, 8 10, 12, 14, 16, 20, 24, 32, 48 or 64.

If the soft fail option is used, the answer is evaluated for the largest valid value of n less than the
requested value.
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6

f — function, supplied by the user External Function

f must return the value of the integrand f, or the normalized integrand g, at a specified point.

The specification of f is:

void f (const double x[], Integer nx, double fv[], Integer *iflag,
Nag_Comm *comm)

1: x[nx] — const double Input
On entry: the abscissae, x;, for ¢ =1,2,...,n, at which function values are required.
2: nx — Integer Input

On entry: n;, the number of abscissae.

3: fv[nx] — double Output
On exit: if adjusted weights are used, the values of the integrand f. fv[i — 1] = f(x;), for
i=1,2,... n.

Otherwise the values of the normalized integrand g¢. fv[i— 1] = g(z;), for
1=1,2,...,n,.

4 iflag — Integer * Input/Output

On entry: iflag = 0.

On exit: set iflag <0 if you wish to force an immediate exit from
nag quad_1d_gauss vec (dOluac) with fail.code = NE_USER_STOP.

5: comm — Nag Comm * Communication Structure

Pointer to structure of type Nag Comm; the following members are relevant to f.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag quad 1d gauss vec
(dOluac) you may allocate memory and initialize these pointers with various
quantities for use by f when called from nag quad 1d gauss vec (dOluac) (see
Section 3.2.1.1 in the Essential Introduction).

Some points to bear in mind when coding f are mentioned in Section 7.

dinest — double * Output

On exit: the estimate of the definite integral.

comm — Nag Comm * Communication Structure

The NAG communication argument (see Section 3.2.1.1 in the Essential Introduction).

fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Error Indicators and Warnings

The value of a and/or b is invalid for the chosen quad_type. Either:

d0luac.4 Mark 24


../GENINT/essint.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf

d01 — Quadrature d0luac

NE_BAD_PARAM
On entry, argument (value) had an illegal value.

The value of a and/or b is invalid.

On entry, quad_type = (value).

On entry, a = (value) and b = (value).
Constraint: |a + b| > 0.0.

The value of a and/or b is invalid.
On entry, quad_type = (value).

On entry, a = (value) and b = (value).
Constraint: |b| > 0.0.

The value of a and/or b is invalid.
On entry, quad_type = (value).
On entry, a = (value) and b = (value).
Constraint: b > 0.0.

NE_INT
On entry, n = (value).
Constraint: n > 0.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_QUAD GAUSS NPTS_RULE

The n-point rule is not among those stored.
On entry: n = (value).
n-point rule used: n = (value).

NE_TOO_SMALL

Underflow occurred in calculation of normal weights.
Reduce n or use adjusted weights: n = (value).

NE_USER_STOP

Exit requested from f with iflag = (value).

NE_WEIGHT _ZERO

No nonzero weights were generated for the provided parameters.

7  Accuracy

The accuracy depends on the behaviour of the integrand, and on the number of abscissae used. No tests
are carried out in nag quad 1d gauss vec (dOluac) to estimate the accuracy of the result. If such an
estimate is required, the function may be called more than once, with a different number of abscissae
each time, and the answers compared. It is to be expected that for sufficiently smooth functions a larger
number of abscissae will give improved accuracy.

Alternatively, the range of integration may be subdivided, the integral estimated separately for each sub-
interval, and the sum of these estimates compared with the estimate over the whole range.

The coding of f may also have a bearing on the accuracy. For example, if a high-order Gauss—Laguerre
formula is used, and the integrand is of the form

flz) = e "g()

it is possible that the exponential term may underflow for some large abscissae. Depending on the
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machine, this may produce an error, or simply be assumed to be zero. In any case, it would be better to
evaluate the expression with

f(x) = sgn(g(x)) x exp(=bx + In|g(z)[)

Another situation requiring care is exemplified by

+00 5
/ e x"dr=0, m odd.
—00
The integrand here assumes very large values; for example, when m = 63, the peak value exceeds
3 x 10**. Now, if the machine holds floating-point numbers to an accuracy of k significant decimal
digits, we could not expect such terms to cancel in the summation leaving an answer of much less than
10%37% (the weights being of order unity); that is, instead of zero we obtain a rather large answer through
rounding error. Such situations are characterised by great variability in the answers returned by formulae
with different values of n.

In general, you should be aware of the order of magnitude of the integrand, and should judge the answer
in that light.

8 Parallelism and Performance

nag quad 1d gauss vec (dOluac) is currently neither directly nor indirectly threaded. In particular, the
user-supplied argument f is not called from within a parallel region initialized inside
nag quad_1ld gauss vec (dOluac).

The user-supplied argument f uses a vectorized interface, allowing for the required vector of function
values to be evaluated in parallel; for example by placing appropriate OpenMP directives in the code for
the user-supplied argument f.

9 Further Comments

The time taken by nag quad 1d gauss vec (dOluac) depends on the complexity of the expression for
the integrand and on the number of abscissae required.

10 Example

This example evaluates the integrals

1
4
/ de=m
0 1+$2

R |
———dx = 0.378671
, 2?Inzx

by Gauss—Legendre quadrature;

by rational Gauss quadrature with b = 0;

/ € dz = 0.048901
2 X
by Gauss—Laguerre quadrature with b = 1; and

+00 +o0 5
/ o3 gy / e 22y — 1 428167

o o)

by Gauss—Hermite quadrature with ¢ = —1 and b = 3.

The formulae with n = 2,4, 8,16,32 and 64 are used in each case. Both adjusted and normal weights are
used for Gauss—Laguerre and Gauss—Hermite quadrature.
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10.1 Program Text

/* nag_quad_1ld_gauss_vec (dOluac) Example Program.
*
* Copyright 2013 Numerical Algorithms Group.
*
*

Mark 24, 2013.
*/
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagdOl.h>

#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL f(const double x[], const Integer nx, double fv[],
Integer *iflag, Nag_Comm *comm) ;
#ifdef _ cplusplus
¥
#endif

int main(void)

{
/* Scalars */
Integer exit_status = 0;
double a, b, dinest;
Integer funid, i, nstor;
/* Arrays */
Integer iuser[1l];
/* Nag Types */
Nag_Comm comm;
NagError fail;
Nag_QuadType quad_type;

printf("nag_quad_1ld_gauss_vec (dOluac) Example Program Results\n");
INIT _FAIL(fail);

/* Use comm to pass information to f. */
comm.iuser = iuser;

for ( funid=1l; funid<=6; funid++) {
switch (funid)
{
case 1:
{

printf ("\nGauss-Legendre example\n");
a = 0.0;
b =1.0;
quad_type = Nag_Quad_Gauss_Legendre;
break;

case 2:

printf ("\nRational Gauss example\n");

a = 2.0;

b = 0.0;

quad_type = Nag_Quad_Gauss_Rational_ Adjusted;
break;

case 3:

printf ("\nGauss-Laguerre example (adjusted weights)\n");
a = 2.0;
b =1.0;
quad_type=Nag_Quad_Gauss_Laguerre_Adjusted;
break;
¥

case 4:

{
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printf ("\nGauss-Laguerre example (normal weights)\n");

a = 2.0;
b =1.0;
quad_type = Nag_Quad_Gauss_Laguerre;
break;
}
case 5:
{
printf ("\nGauss-Hermite example (adjusted weights)\n");
a=-1.0;
b = 3.0;
quad_type = Nag_Quad_Gauss_Hermite_Adjusted;
break;
}
case 6:
{
printf ("\nGauss-Hermite example (normal weights)\n");
a=-1.0;
b = 3.0;
quad_type = Nag_Quad_Gauss_Hermite;
break;
¥
}
iuser[0] = funid;
for (1=0; i<6; i++) {
nstor = pow(2,i+1);
/* Compute the one-dimensional integral employing Gaussian quadrature,
* with quadrature type and weights specified in quad_type, using
* nag_quad_1d_gauss_vec (dOluac).
*
/
nag_guad_1d_gauss_vec(quad_type, a, b, nstor, f, &dinest, &comm, &fail);
switch (fail.code)
{
case NE_NOERROR:
case NE_QUAD_GAUSS_NPTS_RULE:
case NE_UNDERFLOW:
case NE_WEIGHT_ZERO:
/* The definite integral has been estimated.*/
printf("%51d Points Answer = %10.5f\n", nstor,dinest);
break;
3
default:
{
/* A solution could not be calculated due to an illegal parameter
* or a requested exit.
*/
printf("%s\n", fail.message);
exit_status++;
3
¥
3
}
return exit_status;

3

static void NAG_CALL f(const double x[], const Integer nx, double fv[],
Integer *iflag, Nag_Comm *comm)

{

Integer i, funid;

funid = comm->iuser[0];
switch (funid)
{
case 1:
for (i=0; i<nx; i++) fv[i]l = 4.0/(1.0+x[11*x[1]);
break;
case 2:
for (i=0; i<nx; i++) fv[i] = 1.0/(x[il*x[i]l*1log(x[i]));
break;
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case 3:
for (i=0; i<nx; i++) fv[i] = exp(-x[i])/x[i];
break;

case 4:
for (1=0; i<nx; 1i++)
break;

case 5:
for (i=0; i<nx; i++) fv[i] = exp(-3.0*x[i]1*x[1]1-4.0*x[i]-1.0);
break;

case 6:
for (1=0; i<nx; 1i++) fv[i]
break;

default:
*iflag = -1;

}

Hh
<
-
Il

1.0/x[1i];

exp(2.0*x[1]+2.0);

10.2 Program Data

None.
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10.3 Program Results

nag_quad_1ld_gauss_vec (dOluac) Example Program Results

Gauss-Legendre example

2 Points Answer = 3.14754
4 Points Answer = 3.14161
8 Points Answer = 3.14159
16 Points Answer = 3.14159
32 Points Answer = 3.14159
04 Points Answer = 3.14159
Rational Gauss example
2 Points Answer = 0.37989
4 Points Answer = 0.37910
8 Points Answer = 0.37876
1o Points Answer = 0.37869
32 Points Answer = 0.37867
64 Points Answer = 0.37867

Gauss-Laguerre example (adjusted weights)

2 Points Answer = 0.04833
4 Points Answer = 0.04887
8 Points Answer = 0.04890
16 Points Answer = 0.04890
32 Points Answer = 0.04890
64 Points Answer = 0.04890

Gauss-Laguerre example (normal weights)

2 Points Answer = 0.04833
4 Points Answer = 0.04887
8 Points Answer = 0.04890
16 Points Answer = 0.04890
32 Points Answer = 0.04890
64 Points Answer = 0.04890

Gauss-Hermite example (adjusted weights)
2 Points Answer = 1.38381

4 Points Answer = 1.42803
8 Points Answer = 1.42817
16 Points Answer = 1.42817
32 Points Answer = 1.42817
04 Points Answer = 1.42817

Gauss-Hermite example (normal weights)

2 Points Answer = 1.38381
4 Points Answer = 1.42803
8 Points Answer = 1.42817
16 Points Answer = 1.42817
32 Points Answer = 1.42817
04 Points Answer = 1.42817
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