
NAG Library Function Document

nag_1d_quad_inf_wt_trig_1 (d01ssc)

1 Purpose

nag_1d_quad_inf_wt_trig_1 (d01ssc) calculates an approximation to the sine or the cosine transform of a
function g over a;1½ Þ:

I ¼
Z 1
a

g xð Þ sin !xð Þdx or I ¼
Z 1
a

g xð Þ cos !xð Þdx

(for a user-specified value of !).

2 Specification

#include <nag.h>
#include <nagd01.h>

void nag_1d_quad_inf_wt_trig_1 (

double (*g)(double x, Nag_User *comm),

double a, double omega, Nag_TrigTransform wt_func, Integer maxintervals,
Integer max_num_subint, double epsabs, double *result, double *abserr,
Nag_QuadSubProgress *qpsub, Nag_User *comm, NagError *fail)

3 Description

nag_1d_quad_inf_wt_trig_1 (d01ssc) is based upon the QUADPACK routine QAWFE (Piessens et al.
(1983)). It is an adaptive function, designed to integrate a function of the form g xð Þw xð Þ over a semi-
infinite interval, where w xð Þ is either sin !xð Þ or cos !xð Þ. Over successive intervals

Ck ¼ aþ k� 1ð Þ � c; aþ k� c½ �; k ¼ 1; 2; . . . ;qpsub!intervals

integration is performed by the same algorithm as is used by nag_1d_quad_wt_trig_1 (d01snc). The
intervals Ck are of constant length

c ¼ 2 !j j½ � þ 1f g�= !j j; ! 6¼ 0;

where !j j½ � represents the largest integer less than or equal to !j j. Since c equals an odd number of half
periods, the integral contributions over succeeding intervals will alternate in sign when the function g is
positive and monotonically decreasing over a;1½ Þ. The algorithm, described by Piessens et al. (1983),
incorporates a global acceptance criterion (as defined by Malcolm and Simpson (1976)) together with the
�-algorithm (Wynn (1956)) to perform extrapolation. The local error estimation is described by Piessens
et al. (1983).

If ! ¼ 0 and wt func ¼ Nag Cosine, the function uses the same algorithm as nag_1d_quad_inf_1
(d01smc) (with epsrel ¼ 0:0).

In contrast to most other functions in Chapter d01, nag_1d_quad_inf_wt_trig_1 (d01ssc) works only
with a user-specified absolute error tolerance (epsabs). Over the interval Ck it attempts to satisfy the
absolute accuracy requirement

EPSAk ¼ Uk � epsabs;

where Uk ¼ 1� pð Þpk�1, for k ¼ 1; 2; . . . and p ¼ 0:9.

However, when difficulties occur during the integration over the kth interval Ck such that the error flag
qpsub!interval flag½k� 1� is nonzero, the accuracy requirement over subsequent intervals is relaxed.
See Piessens et al. (1983) for more details.

d01 – Quadrature d01ssc

Mark 24 d01ssc.1

../D01/d01snc.pdf
../D01/d01smc.pdf
../D01/d01smc.pdf
../D01/d01conts.pdf
../D01/d01smc.pdf

4 References

Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM
Trans. Math. Software 1 129–146

Piessens R, de Doncker–Kapenga E, Überhuber C and Kahaner D (1983) QUADPACK, A Subroutine
Package for Automatic Integration Springer–Verlag

Wynn P (1956) On a device for computing the em Snð Þ transformation Math. Tables Aids Comput. 10 91–
96

5 Arguments

1: g – function, supplied by the user External Function

g must return the value of the function g at a given point.

The specification of g is:

double g (double x, Nag_User *comm)

1: x – double Input

On entry: the point at which the function g must be evaluated.

2: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p should be cast to the required type, e.g.,

struct user *s = (struct user *)comm ! p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

2: a – double Input

On entry: the lower limit of integration, a.

3: omega – double Input

On entry: the argument ! in the weight function of the transform.

4: wt_func – Nag_TrigTransform Input

On entry: indicates which integral is to be computed:

if wt func ¼ Nag Cosine, w xð Þ ¼ cos !xð Þ;
if wt func ¼ Nag Sine, w xð Þ ¼ sin !xð Þ.

Constraint: wt func ¼ Nag Cosine or Nag Sine.

5: maxintervals – Integer Input

On entry: an upper bound on the number of intervals Ck needed for the integration.

Suggested value: maxintervals ¼ 50 is adequate for most problems.

Constraint: maxintervals � 3.

d01ssc NAG Library Manual

d01ssc.2 Mark 24

6: max_num_subint – Integer Input

On entry: the upper bound on the number of sub-intervals into which the interval of integration
may be divided by the function. The more difficult the integrand, the larger max_num_subint
should be.

Constraint: max num subint � 1.

7: epsabs – double Input

On entry: the absolute accuracy required. If epsabs is negative, the absolute value is used. See
Section 7.

8: result – double * Output

On exit: the approximation to the integral I.

9: abserr – double * Output

On exit: an estimate of the modulus of the absolute error, which should be an upper bound for
I � resultj j.

10: qpsub – Nag_QuadSubProgress *

Pointer to structure of type Nag_QuadSubProgress with the following members:

intervals – Integer Output

On exit: the number of intervals Ck actually used for the integration.

fun_count – Integer Output

On exit: the number of function evaluations performed by nag_1d_quad_inf_wt_trig_1
(d01ssc).

subints_per_interval – Integer * Output

On exit: the maximum number of sub-intervals actually used for integrating over any of the
intervals Ck.

interval_error – double * Output

On exit: the error estimate corresponding to the integral contribution over the interval Ck,
for k ¼ 1; 2; . . . ; intervals.

interval_result – double * Output

On exit: the corresponding integral contribution over the interval Ck , for
k ¼ 1; 2; . . . ; intervals.

interval_flag – Integer * Output

On exit: the error flag corresponding to interval result, for k ¼ 1; 2; . . . ; intervals. See also
Section 6.

When the information available in the arrays interval error, interval result and interval flag is
no longer useful, or before a subsequent call to nag_1d_quad_inf_wt_trig_1 (d01ssc) with the
same argument qpsub is made, you should free the storage contained in this pointer using the
NAG macro NAG_FREE. Note that these arrays do not need to be freed if one of the error exits
NE_INT_ARG_LT, NE_BAD_PARAM or NE_ALLOC_FAIL occurred.

11: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

d01 – Quadrature d01ssc

Mark 24 d01ssc.3

p – Pointer

On entry/exit: the pointer comm!p, of type Pointer, allows you to communicate
information to and from g(). An object of the required type should be declared, e.g., a
structure, and its address assigned to the pointer comm!p by means of a cast to Pointer in
the calling program, e.g., comm.p = (Pointer)&s. The type Pointer is void *.

12: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

In the cases where fail:code ¼ NE QUAD BAD SUBDIV INT, NE_QUAD_MAX_INT or NE_QUA-
D_EXTRAPL_INT, additional information about the cause of the error can be obtained from the array
qpsub!interval flag, as follows:

qpsub!interval flag½k� 1� ¼ 1

The maximum number of subdivisions ¼ max num subintð Þ has been achieved on the kth
interval.

qpsub!interval flag½k� 1� ¼ 2

Occurrence of round-off error is detected and prevents the tolerance imposed on the kth
interval from being achieved.

qpsub!interval flag½k� 1� ¼ 3

Extremely bad integrand behaviour occurs at some points of the kth interval.

qpsub!interval flag½k� 1� ¼ 4

The integration procedure over the kth interval does not converge (to within the required
accuracy) due to round-off in the extrapolation procedure invoked on this interval. It is
assumed that the result on this interval is the best which can be obtained.

qpsub!interval flag½k� 1� ¼ 5

The integral over the kth interval is probably divergent or slowly convergent. It must be
noted that divergence can occur with any other value of qpsub!interval flag½k� 1�.

If you declare and initialize fail and set fail:print ¼ Nag TRUE as recommended then NE_QUAD_-
NO_CONV may be produced, supplemented by messages indicating more precisely where problems
were encountered by the function. However, if the default error handling, NAGERR_DEFAULT, is used then
one of NE_QUAD_MAX_SUBDIV_SPEC_INT, NE_QUAD_ROUNDOFF_TOL_SPEC_INT, NE_-
QUAD_BAD_SPEC_INT, NE_QUAD_NO_CONV_SPEC_INT and NE_QUAD_DIVERGENCE_SPE-
C_INT may occur. Please note the program will terminate when the first of such errors is detected.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument wt_func had an illegal value.

NE_INT_ARG_LT

On entry, maxintervals ¼ valueh i.
Constraint: maxintervals � 3.

On entry, max_num_subint must not be less than 1: max num subint ¼ valueh i.

d01ssc NAG Library Manual

d01ssc.4 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf

NE_QUAD_BAD_SPEC_INT

Bad integrand behaviour occurs at some points of the valueh i interval.
qpsub!interval flag½ valueh i� ¼ valueh i over sub-interval valueh i; valueh ið Þ.

NE_QUAD_BAD_SUBDIV

Extremely bad integrand behaviour occurs around the sub-interval valueh i; valueh ið Þ.
The same advice applies as in the case of NE_QUAD_MAX_SUBDIV.

NE_QUAD_BAD_SUBDIV_INT

Bad integration behaviour has occurred within one or more intervals.

NE_QUAD_DIVERGENCE_SPEC_INT

The integral is probably divergent on the valueh i interval.
qpsub!interval flag½ valueh i� ¼ valueh i over sub-interval valueh i; valueh ið Þ.

NE_QUAD_EXTRAPL_INT

The extrapolation table constructed for convergence acceleration of the series formed by the
integral contribution over the integral does not converge.

NE_QUAD_MAX_INT

Maximum number of intervals allowed has been achieved. Increase the value of maxintervals.

NE_QUAD_MAX_SUBDIV

The maximum number of subdivisions has been reached: max num subint ¼ valueh i.
The maximum number of subdivisions within an interval has been reached without the accuracy
requirements being achieved. Look at the integrand in order to determine the integration
difficulties. If the position of a local difficulty within the interval can be determined (e.g., a
singularity of the integrand or its derivative, a peak, a discontinuity, etc.) you will probably gain
from splitting up the interval at this point and calling this function on the infinite subrange and an
appropriate integrator on the finite subrange. Alternatively, consider relaxing the accuracy
requirements specified by epsabs or increasing the value of max_num_subint.

NE_QUAD_MAX_SUBDIV_SPEC_INT

The maximum number of subdivisions has been reached,
max num subint ¼ valueh i on the valueh i interval.
qpsub!interval flag½ valueh i� ¼ valueh i over sub-interval valueh i; valueh ið Þ.

NE_QUAD_NO_CONV

The integral is probably divergent or slowly convergent.
Please note that divergence can also occur with any error exit other than NE_INT_ARG_LT,
NE_BAD_PARAM or NE_ALLOC_FAIL.

NE_QUAD_NO_CONV_SPEC_INT

The integral has failed to converge on the valueh i interval.
qpsub!interval flag½ valueh i� ¼ valueh i over sub-interval valueh i; valueh ið Þ.

NE_QUAD_ROUNDOFF_ABS_TOL

Round-off error prevents the requested tolerance from being achieved: epsabs ¼ valueh i.
The error may be underestimated. Consider relaxing the accuracy requirements specified by
epsabs.

d01 – Quadrature d01ssc

Mark 24 d01ssc.5

NE_QUAD_ROUNDOFF_EXTRAPL

Round-off error is detected during extrapolation.
The requested tolerance cannot be achieved, because the extrapolation does not increase the
accuracy satisfactorily; the returned result is the best that can be obtained.
The same advice applies as in the case of NE_QUAD_MAX_SUBDIV.

NE_QUAD_ROUNDOFF_TOL_SPEC_INT

Round-off error prevents the requested tolerance from being achieved on the valueh i interval.
qpsub!interval flag½ valueh i� ¼ valueh i over sub-interval valueh i; valueh ið Þ.

7 Accuracy

nag_1d_quad_inf_wt_trig_1 (d01ssc) cannot guarantee, but in practice usually achieves, the following
accuracy:

I � resultj j � epsabsj j

where epsabs is the user-specified absolute error tolerance. Moreover it returns the quantity abserr
which, in normal circumstances, satisfies

I � resultj j � abserr � epsabsj j:

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by nag_1d_quad_inf_wt_trig_1 (d01ssc) depends on the integrand and on the accuracy
required.

10 Example

This example computes Z 1
0

1ffiffiffi
x
p cos �x=2ð Þdx:

10.1 Program Text

/* nag_1d_quad_inf_wt_trig_1 (d01ssc) Example Program.
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
* Mark 6 revised, 2000.
* Mark 7 revised, 2001.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagd01.h>
#include <nagx01.h>

#ifdef __cplusplus
extern "C" {
#endif
static double NAG_CALL g(double x, Nag_User *comm);
#ifdef __cplusplus

d01ssc NAG Library Manual

d01ssc.6 Mark 24

}
#endif

int main(void)
{

static Integer use_comm[1] = {1};
Integer exit_status = 0;
double a;
double omega;
double epsabs, abserr;
Nag_TrigTransform wt_func;
double result;
Nag_QuadSubProgress qpsub;
Integer maxintervals, maxsubint_per_int;
NagError fail;
Nag_User comm;

INIT_FAIL(fail);

printf(
"nag_1d_quad_inf_wt_trig_1 (d01ssc) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.p = (Pointer)

epsabs = 0.001;
a = 0.0;
/* nag_pi (x01aac).
* pi
*/

omega = nag_pi * 0.5;
wt_func = Nag_Cosine;
maxintervals = 50;
maxsubint_per_int = 500;

/* nag_1d_quad_inf_wt_trig_1 (d01ssc).
* One-dimensional adaptive quadrature, semi-infinite
* interval, sine or cosine weight function, thread-safe
*/

nag_1d_quad_inf_wt_trig_1(g, a, omega, wt_func, maxintervals,
maxsubint_per_int, epsabs, &result, &abserr,
&qpsub,
&comm,
&fail);

printf("a - lower limit of integration = %10.4f\n", a);
printf("b - upper limit of integration = infinity\n");
printf("epsabs - absolute accuracy requested = %11.2e\n\n", epsabs);
if (fail.code != NE_NOERROR)

printf("Error from nag_1d_quad_inf_wt_trig_1 (d01ssc) %s\n",
fail.message);

if (fail.code != NE_INT_ARG_LT && fail.code != NE_BAD_PARAM &&
fail.code != NE_ALLOC_FAIL && fail.code != NE_NO_LICENCE)

{
printf("result - approximation to the integral = %9.5f\n",

result);
printf("abserr - estimate of the absolute error = %11.2e\n",

abserr);
printf("qpsub.fun_count - number of function evaluations ="

" %4ld\n", qpsub.fun_count);
printf("qpsub.intervals - number of intervals used = %4ld\n",

qpsub.intervals);
printf("qpsub.subints_per_interval - \n"

"maximum number of subintervals used in any one interval ="
" %4ld\n", qpsub.subints_per_interval);

/* Free memory used by qpsub */
NAG_FREE(qpsub.interval_error);
NAG_FREE(qpsub.interval_result);
NAG_FREE(qpsub.interval_flag);

}
else

{

d01 – Quadrature d01ssc

Mark 24 d01ssc.7

exit_status = 1;
goto END;

}

END:
return exit_status;

}

static double NAG_CALL g(double x, Nag_User *comm)
{

Integer *use_comm = (Integer *)comm->p;

if (use_comm[0])
{

printf("(User-supplied callback g, first invocation.)\n");
use_comm[0] = 0;

}

return (x > 0.0)?1.0/sqrt(x):0.0;
}

10.2 Program Data

None.

10.3 Program Results

nag_1d_quad_inf_wt_trig_1 (d01ssc) Example Program Results
(User-supplied callback g, first invocation.)
a - lower limit of integration = 0.0000
b - upper limit of integration = infinity
epsabs - absolute accuracy requested = 1.00e-03

result - approximation to the integral = 1.00000
abserr - estimate of the absolute error = 5.92e-04
qpsub.fun_count - number of function evaluations = 380
qpsub.intervals - number of intervals used = 6
qpsub.subints_per_interval -
maximum number of subintervals used in any one interval = 8

d01ssc NAG Library Manual

d01ssc.8 (last) Mark 24

	d01ssc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Malcolm and Simpson (1976)
	Piessens et al. (1983)
	Wynn (1956)

	5 Arguments
	g
	x
	comm
	p

	a
	omega
	wt_func
	maxintervals
	max_num_subint
	epsabs
	result
	abserr
	qpsub
	intervals
	fun_count
	subints_per_interval
	interval_error
	interval_result
	interval_flag

	comm
	p

	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT_ARG_LT
	NE_QUAD_BAD_SPEC_INT
	NE_QUAD_BAD_SUBDIV
	NE_QUAD_BAD_SUBDIV_INT
	NE_QUAD_DIVERGENCE_SPEC_INT
	NE_QUAD_EXTRAPL_INT
	NE_QUAD_MAX_INT
	NE_QUAD_MAX_SUBDIV
	NE_QUAD_MAX_SUBDIV_SPEC_INT
	NE_QUAD_NO_CONV
	NE_QUAD_NO_CONV_SPEC_INT
	NE_QUAD_ROUNDOFF_ABS_TOL
	NE_QUAD_ROUNDOFF_EXTRAPL
	NE_QUAD_ROUNDOFF_TOL_SPEC_INT

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

