
NAG Library Function Document

nag_1d_quad_gen_1 (d01sjc)

1 Purpose

nag_1d_quad_gen_1 (d01sjc) is a general purpose integrator which calculates an approximation to the
integral of a function f xð Þ over a finite interval a; b½ �:

I ¼
Z b

a

f xð Þdx:

2 Specification

#include <nag.h>
#include <nagd01.h>

void nag_1d_quad_gen_1 (

double (*f)(double x, Nag_User *comm),

double a, double b, double epsabs, double epsrel,
Integer max_num_subint, double *result, double *abserr,
Nag_QuadProgress *qp, Nag_User *comm, NagError *fail)

3 Description

nag_1d_quad_gen_1 (d01sjc) is based upon the QUADPACK routine QAGS (Piessens et al. (1983)). It
is an adaptive function, using the Gauss 10-point and Kronrod 21-point rules. The algorithm, described
by de Doncker (1978), incorporates a global acceptance criterion (as defined by Malcolm and Simpson
(1976)) together with the �-algorithm (Wynn (1956)) to perform extrapolation. The local error estimation
is described by Piessens et al. (1983).

This function is suitable as a general purpose integrator, and can be used when the integrand has
singularities, especially when these are of algebraic or logarithmic type.

This function requires you to supply a function to evaluate the integrand at a single point.

4 References

de Doncker E (1978) An adaptive extrapolation algorithm for automatic integration ACM SIGNUM
Newsl. 13(2) 12–18

Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM
Trans. Math. Software 1 129–146

Piessens R, de Doncker–Kapenga E, Überhuber C and Kahaner D (1983) QUADPACK, A Subroutine
Package for Automatic Integration Springer–Verlag

Wynn P (1956) On a device for computing the em Snð Þ transformation Math. Tables Aids Comput. 10 91–
96

5 Arguments

1: f – function, supplied by the user External Function

f must return the value of the integrand f at a given point.

The specification of f is:

double f (double x, Nag_User *comm)

d01 – Quadrature d01sjc

Mark 24 d01sjc.1

1: x – double Input

On entry: the point at which the integrand f must be evaluated.

2: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!f!p should be cast to the required type, e.g.,

struct user *s = (struct user *)comm ! p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

2: a – double Input

On entry: the lower limit of integration, a.

3: b – double Input

On entry: the upper limit of integration, b. It is not necessary that a < b.

4: epsabs – double Input

On entry: the absolute accuracy required. If epsabs is negative, the absolute value is used. See
Section 7.

5: epsrel – double Input

On entry: the relative accuracy required. If epsrel is negative, the absolute value is used. See
Section 7.

6: max_num_subint – Integer Input

On entry: the upper bound on the number of sub-intervals into which the interval of integration
may be divided by the function. The more difficult the integrand, the larger max_num_subint
should be.

Constraint: max num subint � 1.

7: result – double * Output

On exit: the approximation to the integral I.

8: abserr – double * Output

On exit: an estimate of the modulus of the absolute error, which should be an upper bound for
I � resultj j.

9: qp – Nag_QuadProgress *

Pointer to structure of type Nag_QuadProgress with the following members:

num_subint – Integer Output

On exit: the actual number of sub-intervals used.

fun_count – Integer Output

On exit: the number of function evaluations performed by nag_1d_quad_gen_1 (d01sjc).

d01sjc NAG Library Manual

d01sjc.2 Mark 24

sub_int_beg_pts – double * Output
sub_int_end_pts – double * Output
sub_int_result – double * Output
sub_int_error – double * Output

On exit: these pointers are allocated memory internally with max_num_subint elements. If
an error exit other than NE_INT_ARG_LT or NE_ALLOC_FAIL occurs, these arrays will
contain information which may be useful. For details, see Section 9.

Before a subsequent call to nag_1d_quad_gen_1 (d01sjc) is made, or when the information
contained in these arrays is no longer useful, you should free the storage allocated by these
pointers using the NAG macro NAG_FREE.

10: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p, of type Pointer, allows you to communicate
information to and from f(). An object of the required type should be declared, e.g., a
structure, and its address assigned to the pointer comm!p by means of a cast to Pointer in
the calling program, e.g., comm.p = (Pointer)&s. The type Pointer is void *.

11: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_INT_ARG_LT

On entry, max_num_subint must not be less than 1: max num subint ¼ valueh i.

NE_QUAD_BAD_SUBDIV

Extremely bad integrand behaviour occurs around the sub-interval valueh i; valueh ið Þ.
The same advice applies as in the case of NE_QUAD_MAX_SUBDIV.

NE_QUAD_MAX_SUBDIV

The maximum number of subdivisions has been reached: max num subint ¼ valueh i.
The maximum number of subdivisions has been reached without the accuracy requirements being
achieved. Look at the integrand in order to determine the integration difficulties. If the position of
a local difficulty within the interval can be determined (e.g., a singularity of the integrand or its
derivative, a peak, a discontinuity, etc.) you will probably gain from splitting up the interval at
this point and calling the integrator on the sub-intervals. If necessary, another integrator, which is
designed for handling the type of difficulty involved, must be used. Alternatively, consider
relaxing the accuracy requirements specified by epsabs and epsrel, or increasing the value of
max_num_subint.

NE_QUAD_NO_CONV

The integral is probably divergent or slowly convergent.
Please note that divergence can occur with any error exit other than NE_INT_ARG_LT and
NE_ALLOC_FAIL.

d01 – Quadrature d01sjc

Mark 24 d01sjc.3

../GENINT/essint.pdf
../GENINT/essint.pdf

NE_QUAD_ROUNDOFF_EXTRAPL

Round-off error is detected during extrapolation.
The requested tolerance cannot be achieved, because the extrapolation does not increase the
accuracy satisfactorily; the returned result is the best that can be obtained.
The same advice applies as in the case of NE_QUAD_MAX_SUBDIV.

NE_QUAD_ROUNDOFF_TOL

Round-off error prevents the requested tolerance from being achieved: epsabs ¼ valueh i,
epsrel ¼ valueh i.
The error may be underestimated. Consider relaxing the accuracy requirements specified by
epsabs and epsrel.

7 Accuracy

nag_1d_quad_gen_1 (d01sjc) cannot guarantee, but in practice usually achieves, the following accuracy:

I � resultj j � tol

where

tol ¼ max epsabsj j; epsrelj j � Ij jf g

and epsabs and epsrel are user-specified absolute and relative error tolerances. Moreover it returns the
quantity abserr which, in normal circumstances, satisfies

I � resultj j � abserr � tol:

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by nag_1d_quad_gen_1 (d01sjc) depends on the integrand and the accuracy required.

If the function fails with an error exit other than NE_INT_ARG_LT or NE_ALLOC_FAIL, then you may
wish to examine the contents of the structure qp. These contain the end-points of the sub-intervals used
by nag_1d_quad_gen_1 (d01sjc) along with the integral contributions and error estimates over the sub-
intervals.

Specifically, for i ¼ 1; 1; 2; . . . ; n, let ri denote the approximation to the value of the integral over the
sub-interval ai; bi½ � in the partition of a; b½ � and ei be the corresponding absolute error estimate.

Then,
R bi
ai
f xð Þdx ’ ri and result ¼

Pn
i¼1ri unless the function terminates while testing for divergence of

the integral (see Section 3.4.3 of Piessens et al. (1983)). In this case, result (and abserr) are taken to be
the values returned from the extrapolation process. The value of n is returned in qp!num subint, and
the values ai, bi, ri and ei are stored in the structure qp as

ai ¼ qp!sub int beg pts½i� 1�,
bi ¼ qp!sub int end pts½i� 1�,
ri ¼ qp!sub int result½i� 1� and

ei ¼ qp!sub int error½i� 1�.

d01sjc NAG Library Manual

d01sjc.4 Mark 24

10 Example

This example computes
Z 2�

0

x sin 30xð Þffi
1� x

2�

� �2
� �r dx:

10.1 Program Text

/* nag_1d_quad_gen_1 (d01sjc) Example Program.
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
* Mark 6 revised, 2000.
* Mark 7 revised, 2001.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagd01.h>
#include <nagx01.h>

#ifdef __cplusplus
extern "C" {
#endif
static double NAG_CALL f(double x, Nag_User *comm);
#ifdef __cplusplus
}
#endif

int main(void)
{

static Integer use_comm[1] = {1};
Integer exit_status = 0;
double a, b;
double epsabs, abserr, epsrel, result;
Nag_QuadProgress qp;
Integer max_num_subint;
NagError fail;
/* nag_pi (x01aac).
* pi
*/

double pi = nag_pi;
Nag_User comm;

INIT_FAIL(fail);

printf("nag_1d_quad_gen_1 (d01sjc) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.p = (Pointer)

epsabs = 0.0;
epsrel = 0.0001;
a = 0.0;
b = pi*2.0;
max_num_subint = 200;
/* nag_1d_quad_gen_1 (d01sjc).
* One-dimensional adaptive quadrature, allowing for badly
* behaved integrands, thread-safe
*/

nag_1d_quad_gen_1(f, a, b, epsabs, epsrel, max_num_subint, &result, &abserr,
&qp, &comm, &fail);

printf("a - lower limit of integration = %10.4f\n", a);

d01 – Quadrature d01sjc

Mark 24 d01sjc.5

printf("b - upper limit of integration = %10.4f\n", b);
printf("epsabs - absolute accuracy requested = %11.2e\n", epsabs);
printf("epsrel - relative accuracy requested = %11.2e\n\n", epsrel);
if (fail.code != NE_NOERROR)

printf("Error from nag_1d_quad_gen_1 (d01sjc) %s\n", fail.message);
if (fail.code != NE_INT_ARG_LT && fail.code != NE_ALLOC_FAIL &&

fail.code != NE_NO_LICENCE)
{

printf("result - approximation to the integral = %9.5f\n",
result);

printf("abserr - estimate of the absolute error = %11.2e\n",
abserr);

printf("qp.fun_count - number of function evaluations = %4ld\n",
qp.fun_count);

printf("qp.num_subint - number of subintervals used = %4ld\n",
qp.num_subint);

/* Free memory used by qp */
NAG_FREE(qp.sub_int_beg_pts);
NAG_FREE(qp.sub_int_end_pts);
NAG_FREE(qp.sub_int_result);
NAG_FREE(qp.sub_int_error);

}
else

{
exit_status = 1;
goto END;

}

END:
return exit_status;

}

static double NAG_CALL f(double x, Nag_User *comm)
{

/* nag_pi (x01aac), see above. */
double pi = nag_pi;
Integer *use_comm = (Integer *)comm->p;

if (use_comm[0])
{

printf("(User-supplied callback f, first invocation.)\n");
use_comm[0] = 0;

}

return(x*sin(x*30.0)/sqrt(1.0-x*x/(pi*pi*4.0)));
}

10.2 Program Data

None.

10.3 Program Results

nag_1d_quad_gen_1 (d01sjc) Example Program Results
(User-supplied callback f, first invocation.)
a - lower limit of integration = 0.0000
b - upper limit of integration = 6.2832
epsabs - absolute accuracy requested = 0.00e+00
epsrel - relative accuracy requested = 1.00e-04

result - approximation to the integral = -2.54326
abserr - estimate of the absolute error = 1.28e-05
qp.fun_count - number of function evaluations = 777
qp.num_subint - number of subintervals used = 19

d01sjc NAG Library Manual

d01sjc.6 (last) Mark 24

	d01sjc
	1 Purpose
	2 Specification
	3 Description
	4 References
	de Doncker (1978)
	Malcolm and Simpson (1976)
	Piessens et al. (1983)
	Wynn (1956)

	5 Arguments
	f
	x
	comm
	p

	a
	b
	epsabs
	epsrel
	max_num_subint
	result
	abserr
	qp
	num_subint
	fun_count
	sub_int_beg_pts
	sub_int_end_pts
	sub_int_result
	sub_int_error

	comm
	p

	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_INT_ARG_LT
	NE_QUAD_BAD_SUBDIV
	NE_QUAD_MAX_SUBDIV
	NE_QUAD_NO_CONV
	NE_QUAD_ROUNDOFF_EXTRAPL
	NE_QUAD_ROUNDOFF_TOL

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

