NAG Library Function Document nag_idwt_2d (c09ebc)

1 Purpose

nag_idwt_2d (c09ebc) computes the inverse two-dimensional discrete wavelet transform (DWT) at a single level. The initialization function nag_wfilt_2d (c09abc) must be called first to set up the DWT options.

2 Specification

3 Description

nag_idwt_2d (c09ebc) performs the inverse operation of function nag_dwt_2d (c09eac). That is, given sets of approximation, horizontal, vertical and diagonal coefficients computed by function nag_dwt_2d (c09eac) using a DWT as set up by the initialization function nag_wfilt_2d (c09abc), on a real matrix, B, nag_idwt_2d (c09ebc) will reconstruct B.

4 References

None.

5 Arguments

1: \mathbf{m} - Integer Input

On entry: number of rows, m, of data matrix B.

Constraint: this must be the same as the value **m** passed to the initialization function nag_wfilt_2d (c09abc).

2: **n** – Integer Input

On entry: number of columns, n, of data matrix B.

Constraint: this must be the same as the value **n** passed to the initialization function nag_wfilt_2d (c09abc).

3: $\mathbf{ca}[dim]$ – const double Input

Note: the dimension, dim, of the array **ca** must be at least **ldca** $\times n_{cn}$ where n_{cn} is the argument **nwcn** returned by function nag wfilt 2d (c09abc).

The (i, j)th element of the matrix is stored in $\mathbf{ca}[(j-1) \times \mathbf{ldca} + i - 1]$.

On entry: contains the $n_{\rm cm}$ by $n_{\rm cn}$ matrix of approximation coefficients, C_a . This array will normally be the result of some transformation on the coefficients computed by function nag dwt 2d (c09eac).

Mark 24 c09ebc.1

4: **Idca** – Integer Input

On entry: the stride separating matrix row elements in the array ca.

Constraint: Idca $\geq n_{\rm cm}$ where $n_{\rm cm} = n_{\rm ct}/(4n_{\rm cn})$ and $n_{\rm cn}$, $n_{\rm ct}$ are returned by the initialization function nag wfilt 2d (c09abc).

5: $\mathbf{ch}[dim] - \mathbf{const} \ \mathbf{double}$

Input

Note: the dimension, dim, of the array **ch** must be at least **ldch** \times $n_{\rm cn}$ where $n_{\rm cn}$ is the argument **nwcn** returned by function nag wfilt 2d (c09abc).

The (i, j)th element of the matrix is stored in $\mathbf{ch}[(j-1) \times \mathbf{ldch} + i - 1]$.

On entry: contains the $n_{\rm cm}$ by $n_{\rm cn}$ matrix of horizontal coefficients, C_h . This array will normally be the result of some transformation on the coefficients computed by function nag_dwt_2d (c09eac).

6: **ldch** – Integer *Input*

On entry: the stride separating matrix row elements in the array ch.

Constraint: **ldch** $\geq n_{\rm cm}$ where $n_{\rm cm} = n_{\rm ct}/(4n_{\rm cn})$ and $n_{\rm cn}$, $n_{\rm ct}$ are returned by the initialization function nag wfilt 2d (c09abc).

7: $\mathbf{cv}[dim]$ – const double

Input

Note: the dimension, dim, of the array **cv** must be at least $\mathbf{ldcv} \times n_{cn}$ where n_{cn} is the argument **nwcn** returned by function nag wfilt 2d (c09abc).

The (i, j)th element of the matrix is stored in $\mathbf{cv}[(j-1) \times \mathbf{ldcv} + i - 1]$.

On entry: contains the $n_{\rm cm}$ by $n_{\rm cn}$ matrix of vertical coefficients, C_v . This array will normally be the result of some transformation on the coefficients computed by function nag dwt 2d (c09eac).

8: **ldcv** – Integer *Input*

On entry: the stride separating matrix row elements in the array cv.

Constraint: **ldcv** $\geq n_{\rm cm}$ where $n_{\rm cm} = n_{\rm ct}/(4n_{\rm cn})$ and $n_{\rm cn}$, $n_{\rm ct}$ are returned by the initialization function nag_wfilt_2d (c09abc).

9: $\mathbf{cd}[dim] - \text{const double}$

Input

Note: the dimension, dim, of the array **cd** must be at least $\mathbf{ldcd} \times n_{cn}$ where n_{cn} is the argument **nwcn** returned by function nag wfilt 2d (c09abc).

The (i, j)th element of the matrix is stored in $\operatorname{cd}[(j-1) \times \operatorname{ldcd} + i - 1]$.

On entry: contains the $n_{\rm cm}$ by $n_{\rm cn}$ matrix of diagonal coefficients, C_d . This array will normally be the result of some transformation on the coefficients computed by function nag_dwt_2d (c09eac).

10: **ldcd** – Integer Input

On entry: the stride separating matrix row elements in the array cd.

Constraint: $\mathbf{ldcd} \ge n_{\rm cm}$ where $n_{\rm cm} = n_{\rm ct}/(4n_{\rm cn})$ and $n_{\rm cn}$, $n_{\rm ct}$ are returned by the initialization function nag_wfilt_2d (c09abc).

11: $\mathbf{b}[\mathbf{ldb} \times \mathbf{n}] - \text{double}$

Output

Note: the (i, j)th element of the matrix B is stored in $\mathbf{b}[(j-1) \times \mathbf{ldb} + i - 1]$.

On exit: the m by n reconstructed matrix, B, based on the input approximation, horizontal, vertical and diagonal coefficients and the transform options supplied to the initialization function nag_wfilt_2d (c09abc).

c09ebc.2 Mark 24

12: **ldb** – Integer

On entry: the stride separating matrix row elements in the array b.

Constraint: $ldb \ge m$.

13: **icomm**[180] – const Integer

Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension as setup in the call to the initialization function nag wfilt 2d (c09abc).

14: **fail** – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE BAD PARAM

On entry, argument (value) had an illegal value.

NE_INITIALIZATION

Either the initialization function has not been called first or icomm has been corrupted.

Either the initialization function was called with $wtrans = Nag_MultiLevel$ or icomm has been corrupted.

NE INT

On entry, $ldca = \langle value \rangle$.

Constraint: **Idca** $\geq \langle value \rangle$, the number of wavelet coefficients in the first dimension.

On entry, $\mathbf{ldcd} = \langle value \rangle$.

Constraint: $ldcd \ge \langle value \rangle$, the number of wavelet coefficients in the first dimension.

On entry, **ldch** = $\langle value \rangle$.

Constraint: **ldch** $\geq \langle value \rangle$, the number of wavelet coefficients in the first dimension.

On entry, $ldcv = \langle value \rangle$.

Constraint: $ldev \ge \langle value \rangle$, the number of wavelet coefficients in the first dimension.

On entry, $\mathbf{m} = \langle value \rangle$.

Constraint: $\mathbf{m} = \langle value \rangle$, the value of \mathbf{m} on initialization (see nag_wfilt_2d (c09abc)).

On entry, $\mathbf{n} = \langle value \rangle$.

Constraint: $\mathbf{n} = \langle value \rangle$, the value of \mathbf{n} on initialization (see nag wfilt 2d (c09abc)).

NE INT 2

```
On entry, \mathbf{ldb} = \langle value \rangle and \mathbf{m} = \langle value \rangle. Constraint: \mathbf{ldb} \geq \mathbf{m}.
```

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

Mark 24 c09ebc.3

7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the convolution and downsampling and should thus be close to *machine precision*.

8 Parallelism and Performance

nag_idwt_2d (c09ebc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

Please consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

See Section 10 in nag_dwt_2d (c09eac).

c09ebc.4 (last) Mark 24