NAG Library Function Document nag imlmodwt (c09ddc)

1 Purpose

nag_imlmodwt (c09ddc) computes the inverse one-dimensional multi-level maximal overlap discrete wavelet transform (MODWT). This function reconstructs data from (possibly filtered or otherwise manipulated) wavelet transform coefficients calculated by nag_mlmodwt (c09dcc) from an original set of data. The initialization function nag_wfilt (c09aac) must be called first to set up the MODWT options.

2 Specification

3 Description

nag_imlmodwt (c09ddc) performs the inverse operation of nag_mlmodwt (c09dcc). That is, given a set of wavelet coefficients computed by nag_mlmodwt (c09dcc) using a MODWT as set up by the initialization function nag_wfilt (c09aac) on a real array of length n, nag_imlmodwt (c09ddc) will reconstruct the data array y_i , for i = 1, 2, ..., n, from which the coefficients were derived.

4 References

Percival D B and Walden A T (2000) Wavelet Methods for Time Series Analysis Cambridge University Press

5 Arguments

1: **nwlinv** – Integer

Input

On entry: the number of levels to be used in the inverse multi-level transform. The number of levels must be less than or equal to $n_{\rm fwd}$, which has the value of argument **nwl** as used in the computation of the wavelet coefficients using nag_mlmodwt (c09dcc). The data will be reconstructed to level (**nwl** – **nwlinv**), where level 0 is the original input dataset provided to nag_mlmodwt (c09dcc).

Constraint: $1 \le \text{nwlinv} \le n_{\text{fwd}}$, where n_{fwd} is the value used in a preceding call to nag_mlmodwt (c09dcc).

2: **keepa** – Nag WaveletCoefficients

Input

On entry: determines whether the approximation coefficients are stored in array \mathbf{c} for every level of the computed transform or else only for the final level. In both cases, the detail coefficients are stored in \mathbf{c} for every level computed.

keepa = Nag_StoreAll

Retain approximation coefficients for all levels computed.

keepa = Nag_StoreFinal

Retain approximation coefficients for only the final level computed.

Constraint: keepa = Nag_StoreAll or Nag_StoreFinal.

Mark 24 c09ddc.1

3: **lenc** – Integer *Input*

On entry: the dimension of the array \mathbf{c} .

Constraints:

if **keepa** = Nag_StoreFinal, **lenc** $\geq (n_1 + 1) \times n_a$;

if **keepa** = Nag_StoreAll, **lenc** $\geq 2 \times n_l \times n_a$, where n_a is the number of approximation or detail coefficients at each level and is unchanged from the preceding call to nag_mlmodwt (c09dcc).

4: $\mathbf{c}[\mathbf{lenc}] - \mathbf{const} \ \mathbf{double}$

Input

On entry: the coefficients of a multi-level wavelet transform of the dataset.

The coefficients are stored in **c** as follows:

If **keepa** = Nag_StoreFinal,

 $C(1:n_a)$

Contains the level n_l approximation coefficients;

$$\mathbf{C}(n_a + (i-1) \times n_d + 1 : n_a + i \times n_d)$$

Contains the level $(n_l - i + 1)$ detail coefficients, for $i = 1, 2, ..., n_l$;

If $keepa = Nag_StoreAll$,

$$\mathbf{C}((i-1) \times n_a + 1 : i \times n_a)$$

Contains the level $(n_l - i + 1)$ approximation coefficients, for $i = 1, 2, \dots, n_l$;

$$\mathbf{C}(n_l \times n_a + (i-1) \times n_d + 1 : n_l \times n_a + i \times n_d)$$

Contains the level *i* detail coefficients, for $i = 1, 2, \dots, n_l$.

The values n_a and n_d denote the numbers of approximation and detail coefficients respectively, which are equal. This number is returned as output in **na** from a preceding call to nag_mlmodwt (c09dcc). See nag_mlmodwt (c09dcc) for details.

5: **n** – Integer Input

On entry: n, the length of the data array, y, to be reconstructed.

Constraint: This must be the same as the value **n** passed to the initialization function nag_wfilt (c09aac).

6: $\mathbf{y}[\mathbf{n}]$ – double

On exit: the dataset reconstructed from the multi-level wavelet transform coefficients and the transformation options supplied to the initialization function nag_wfilt (c09aac).

7: icomm[100] - const Integer

Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension for the forward transform previously computed by nag_mlmodwt (c09dcc).

8: **fail** – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

c09ddc.2 Mark 24

NE_ARRAY_DIM_LEN

```
On entry, lenc is set too small: lenc = \langle value \rangle. Constraint: lenc \geq \langle value \rangle.
```

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE INITIALIZATION

On entry, **n** is inconsistent with the value passed to the initialization function: $\mathbf{n} = \langle value \rangle$, **n** should be $\langle value \rangle$.

On entry, the initialization function nag_wfilt (c09aac) has not been called first or it has not been called with $wtrans = Nag_MODWTMulti$, or the communication array icomm has become corrupted.

NE INT

```
On entry, nwlinv = \langle value \rangle. Constraint: nwlinv \geq 1.
```

NE INT 2

On entry, **nwlinv** is larger than the number of levels computed by the preceding call to nag_mlmodwt (c09dcc): **nwlinv** = $\langle value \rangle$, expected $\langle value \rangle$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the convolution and downsampling and should thus be close to *machine precision*.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

See Section 10 in nag_mlmodwt (c09dcc).

Mark 24 c09ddc.3 (last)