NAG Library Function Document ## nag sum fft hermitian 2d (c06pwc) #### 1 Purpose nag_sum_fft_hermitian_2d (c06pwc) computes the two-dimensional inverse discrete Fourier transform of a bivariate Hermitian sequence of complex data values. ## 2 Specification ### 3 Description nag_sum_fft_hermitian_2d (c06pwc) computes the two-dimensional inverse discrete Fourier transform of a bivariate Hermitian sequence of complex data values $z_{j_1j_2}$, for $j_1=0,1,\ldots,m-1$ and $j_2=0,1,\ldots,n-1$. The discrete Fourier transform is here defined by $$\hat{x}_{k_1k_2} = \frac{1}{\sqrt{mn}} \sum_{j_1=0}^{m-1} \sum_{j_2=0}^{n-1} z_{j_1j_2} \times \exp\left(2\pi i \left(\frac{j_1k_1}{m} + \frac{j_2k_2}{n}\right)\right),$$ where $k_1=0,1,\ldots,m-1$ and $k_2=0,1,\ldots,n-1$. (Note the scale factor of $\frac{1}{\sqrt{mn}}$ in this definition.) Because the input data satisfies conjugate symmetry (i.e., $z_{k_1k_2}$ is the complex conjugate of $z_{(m-k_1)k_2}$, the transformed values $\hat{x}_{k_1k_2}$ are real. A call of nag_sum_fft_real_2d (c06pvc) followed by a call of nag_sum_fft_hermitian_2d (c06pwc) will restore the original data. This function performs multiple one-dimensional discrete Fourier transforms by the fast Fourier transform (FFT) algorithm in Brigham (1974) and Temperton (1983). #### 4 References Brigham E O (1974) The Fast Fourier Transform Prentice-Hall Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340-350 ### 5 Arguments 1: \mathbf{m} - Integer Input On entry: m, the first dimension of the transform. Constraint: $\mathbf{m} \geq 1$. 2: **n** – Integer Input On entry: n, the second dimension of the transform. Constraint: $\mathbf{n} \geq 1$. Mark 24 c06pwc.1 c06pwc NAG Library Manual 3: $y[(m/2 + 1) \times n]$ – const Complex Input On entry: the Hermitian sequence of complex input dataset z, where $z_{j_1j_2}$ is stored in $\mathbf{y}[j_2 \times (m/2+1)+j_1]$, for $j_1=0,1,\ldots,m/2$ and $j_2=0,1,\ldots,n-1$. 4: $\mathbf{x}[\mathbf{m} \times \mathbf{n}] - \text{double}$ Output On exit: the real output dataset \hat{x} , where $\hat{x}_{k_1k_2}$ is stored in $\mathbf{x}[k_2 \times m + k_1]$, for $k_1 = 0, 1, \dots, m-1$ and $k_2 = 0, 1, \dots, n-1$. 5: **fail** – NagError * Input/Output The NAG error argument (see Section 3.6 in the Essential Introduction). ## 6 Error Indicators and Warnings #### NE_ALLOC_FAIL Dynamic memory allocation failed. #### **NE BAD PARAM** On entry, argument (value) had an illegal value. ### NE_INT On entry, $\mathbf{m} = \langle value \rangle$. Constraint: $\mathbf{m} \geq 1$. On entry, $\mathbf{n} = \langle value \rangle$. Constraint: $\mathbf{n} \geq 1$. #### NE INTERNAL ERROR An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance. ### 7 Accuracy Some indication of accuracy can be obtained by performing a forward transform using nag_sum_fft_real_2d (c06pvc) and a backward transform using nag_sum_fft_hermitian_2d (c06pvc), and comparing the results with the original sequence (in exact arithmetic they would be identical). ## 8 Parallelism and Performance nag_sum_fft_hermitian_2d (c06pwc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library. nag_sum_fft_hermitian_2d (c06pwc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information. Please consult the Users' Note for your implementation for any additional implementation-specific information. #### 9 Further Comments The time taken by nag_sum_fft_hermitian_2d (c06pwc) is approximately proportional to $mn\log(mn)$, but also depends on the factors of m and n. nag_sum_fft_hermitian_2d (c06pwc) is fastest if the only prime factors of m and n are 2, 3 and 5, and is particularly slow if m or n is a large prime, or has large prime factors. c06pwc.2 Mark 24 Workspace is internally allocated by nag_sum_fft_hermitian_2d (c06pwc). The total size of these arrays is approximately proportional to mn. # 10 Example See Section 10 in nag_sum_fft_real_2d (c06pvc). Mark 24 c06pwc.3 (last)