
NAG Library Function Document

nag_zeros_complex_poly (c02afc)

1 Purpose

nag_zeros_complex_poly (c02afc) finds all the roots of a complex polynomial equation, using a variant
of Laguerre’s method.

2 Specification

#include <nag.h>
#include <nagc02.h>

void nag_zeros_complex_poly (Integer n, const Complex a[], Nag_Boolean scale,
Complex z[], NagError *fail)

3 Description

nag_zeros_complex_poly (c02afc) attempts to find all the roots of the nth degree complex polynomial
equation

P zð Þ ¼ a0z
n þ a1z

n�1 þ a2z
n�2 þ � � � þ an�1zþ an ¼ 0:

The roots are located using a modified form of Laguerre’s method, originally proposed by Smith (1967).

The method of Laguerre (see Wilkinson (1965)) can be described by the iterative scheme

L zkð Þ ¼ zkþ1 � zk ¼
�nP zkð Þ

P 0 zkð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
H zkð Þ

p ;

where H zkð Þ ¼ n� 1ð Þ n� 1ð Þ P 0 zkð Þð Þ2 � nP zkð ÞP 00 zkð Þ
h i

, and z0 is specified.

The sign in the denominator is chosen so that the modulus of the Laguerre step at zk, viz. L zkð Þj j, is as
small as possible. The method can be shown to be cubically convergent for isolated roots (real or
complex) and linearly convergent for multiple roots.

The function generates a sequence of iterates z1; z2; z3; . . . ; such that P zkþ1ð Þj j < P zkð Þj j and ensures
that zkþ1 þ L zkþ1ð Þ ‘roughly’ lies inside a circular region of radius Fj j about zk known to contain a zero
of P zð Þ; that is, L zkþ1ð Þj j � Fj j, where F denotes the Fejér bound (see Marden (1966)) at the point zk.
Following Smith (1967), F is taken to be min B; 1:445nRð Þ, where B is an upper bound for the
magnitude of the smallest zero given by

B ¼ 1:0001�min
ffiffiffi
n
p

L zkð Þ; r1j j; an=a0j j1=n
� �

;

r1 is the zero X of smaller magnitude of the quadratic equation

P 00 zkð Þ= 2n n� 1ð Þð Þð ÞX2 þ P 0 zkð Þ=nð ÞX þ 1

2
P zkð Þ ¼ 0

and the Cauchy lower bound R for the smallest zero is computed (using Newton’s Method) as the
positive root of the polynomial equation

a0j jzn þ a1j jzn�1 þ a2j jzn�2 þ � � � þ an�1j jz� anj j ¼ 0:

Starting from the origin, successive iterates are generated according to the rule zkþ1 ¼ zk þ L zkð Þ for
k ¼ 1; 2; 3; . . . and L zkð Þ is ‘adjusted’ so that P zkþ1ð Þj j < P zkð Þj j and L zkþ1ð Þj j � Fj j. The iterative
procedure terminates if P zkþ1ð Þ is smaller in absolute value than the bound on the rounding error in
P zkþ1ð Þ and the current iterate zp ¼ zkþ1 is taken to be a zero of P zð Þ. The deflated polynomial
~P zð Þ ¼ P zð Þ= z� zp

� �
of degree n� 1 is then formed, and the above procedure is repeated on the

c02 – Zeros of Polynomials c02afc

Mark 24 c02afc.1

deflated polynomial until n < 3, whereupon the remaining roots are obtained via the ‘standard’ closed
formulae for a linear (n ¼ 1) or quadratic (n ¼ 2) equation.

4 References

Marden M (1966) Geometry of polynomials Mathematical Surveys 3 American Mathematical Society,
Providence, RI

Smith B T (1967) ZERPOL: a zero finding algorithm for polynomials using Laguerre’s method Technical
Report Department of Computer Science, University of Toronto, Canada

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

5 Arguments

1: n – Integer Input

On entry: the degree of the polynomial, n.

Constraint: n � 1.

2: a½nþ 1� – const Complex Input

On entry: a½i�:re and a½i�:im must contain the real and imaginary parts of ai (i.e., the coefficient of
zn�i), for i ¼ 0; 1; . . . ; n.

Constraint: a½0�:re 6¼ 0:0 or a½0�:im 6¼ 0:0.

3: scale – Nag_Boolean Input

On entry: indicates whether or not the polynomial is to be scaled. The recommended value is
Nag_TRUE. See Section 9 for advice on when it may be preferable to set scale ¼ Nag FALSE
and for a description of the scaling strategy.

4: z½n� – Complex Output

On exit: the real and imaginary parts of the roots are stored in z½i�:re and z½i�:im respectively, for
i ¼ 0; 1; . . . ; n� 1.

5: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_COMPLEX_ZERO

On entry, the complex variable a½0� has zero real and imaginary parts.

NE_INT_ARG_LT

On entry, n ¼ valueh i.
Constraint: n � 1.

c02afc NAG Library Manual

c02afc.2 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_POLY_NOT_CONV

The iterative procedure has failed to converge. This error is very unlikely to occur. If it does,
please contact NAG immediately, as some basic assumption for the arithmetic has been violated.

NE_POLY_OVFLOW

The function cannot evaluate P zð Þ near some of its zeros without overflow. Please contact NAG
immediately.

NE_POLY_UNFLOW

The function cannot evaluate P zð Þ near some of its zeros without underflow. Please contact NAG
immediately.

7 Accuracy

All roots are evaluated as accurately as possible, but because of the inherent nature of the problem
complete accuracy cannot be guaranteed.

8 Parallelism and Performance

Not applicable.

9 Further Comments

If scale ¼ Nag TRUE, then a scaling factor for the coefficients is chosen as a power of the base b of the
machine so that the largest coefficient in magnitude approaches thresh ¼ bemax�p. You should note that
no scaling is performed if the largest coefficient in magnitude exceeds thresh, even if
scale ¼ Nag TRUE. (b, emax and p are defined in Chapter x02.)

However, with scale ¼ Nag TRUE, overflow may be encountered when the input coefficients
a0; a1; a2; . . . ; an vary widely in magnitude, particularly on those machines for which b4p overflows.
In such cases, scale should be set to Nag_FALSE and the coefficients scaled so that the largest
coefficient in magnitude does not exceed bemax�2p.

Even so, the scaling strategy used in nag_zeros_complex_poly (c02afc) is sometimes insufficient to
avoid overflow and/or underflow conditions. In such cases, you are recommended to scale the
independent variable zð Þ so that the disparity between the largest and smallest coefficient in magnitude is
reduced. That is, use the function to locate the zeros of the polynomial d� P czð Þ for some suitable
values of c and d. For example, if the original polynomial was P zð Þ ¼ 2�100iþ 2100z20, then choosing
c ¼ 2�10 and d ¼ 2100, for instance, would yield the scaled polynomial iþ z20, which is well-behaved
relative to overflow and underflow and has zeros which are 210 times those of P zð Þ.
If the function fails with NE_POLY_NOT_CONV, NE_POLY_UNFLOW or NE_POLY_OVFLOW, then
the real and imaginary parts of any roots obtained before the failure occurred are stored in z in the
reverse order in which they were found. More precisely, z½n� 1�:re and z½n� 1�:im contain the real and
imaginary parts of the 1st root found, z½n� 2�:re and z½n� 2�:im contain the real and imaginary parts of
the 2nd root found, and so on. The real and imaginary parts of any roots not found will be set to a large

negative number, specifically �1:0=
ffiffiffiffiffiffiffi
2:0
p

� nag real safe small number
� �

.

c02 – Zeros of Polynomials c02afc

Mark 24 c02afc.3

../X02/x02conts.pdf
../X02/x02amc.pdf

10 Example

To find the roots of the polynomial a0z
5 þ a1z

4 þ a2z
3 þ a3z

2 þ a4zþ a5 ¼ 0, where a0 ¼ 5:0þ 6:0ið Þ,
a1 ¼ 30:0þ 20:0ið Þ, a2 ¼ � 0:2þ 6:0ið Þ, a3 ¼ 50:0þ 100000:0ið Þ, a4 ¼ � 2:0� 40:0ið Þ a n d
a5 ¼ 10:0þ 1:0ið Þ.

10.1 Program Text

/* nag_zeros_complex_poly (c02afc) Example Program.
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
*
* Mark 8 revised, 2004.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc02.h>

int main(void)
{

Nag_Boolean scale;
Complex *a = 0, *z = 0;
Integer exit_status = 0, i, n;
NagError fail;

INIT_FAIL(fail);

printf("nag_zeros_complex_poly (c02afc) Example Program Results\n");
/* Skip heading in data file */
scanf("%*[^\n]");
scanf("%ld", &n);
if (n > 0)

{
if (!(a = NAG_ALLOC(n+1, Complex)) ||

!(z = NAG_ALLOC(n, Complex)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}

else
{

printf("Invalid n.\n");
exit_status = 1;
return exit_status;

}
scale = Nag_TRUE;
for (i = 0; i <= n; i++)

scanf("%lf%lf", &a[i].re, &a[i].im);

/* nag_zeros_complex_poly (c02afc).
* Zeros of a polynomial with complex coefficients
*/

nag_zeros_complex_poly(n, a, scale, z, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_zeros_complex_poly (c02afc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}
printf("\nDegree of polynomial = %4ld\n\n", n);
printf("Roots of polynomial\n\n");

c02afc NAG Library Manual

c02afc.4 Mark 24

for (i = 0; i < n; ++i)
printf("z = %13.4e %+14.4e\n", z[i].re, z[i].im);

END:
NAG_FREE(a);
NAG_FREE(z);
return exit_status;

}

10.2 Program Data

nag_zeros_complex_poly (c02afc) Example Program Data
5

5.0 6.0
30.0 20.0
-0.2 -6.0
50.0 100000.0
-2.0 40.0
10.0 1.0

10.3 Program Results

nag_zeros_complex_poly (c02afc) Example Program Results

Degree of polynomial = 5

Roots of polynomial

z = -2.4328e+01 -4.8555e+00
z = 5.2487e+00 +2.2736e+01
z = 1.4653e+01 -1.6569e+01
z = -6.9264e-03 -7.4434e-03
z = 6.5264e-03 +7.4232e-03

c02 – Zeros of Polynomials c02afc

Mark 24 c02afc.5 (last)

	c02afc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Marden (1966)
	Smith (1967)
	Wilkinson (1965)

	5 Arguments
	n
	a
	scale
	z
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_COMPLEX_ZERO
	NE_INT_ARG_LT
	NE_INTERNAL_ERROR
	NE_POLY_NOT_CONV
	NE_POLY_OVFLOW
	NE_POLY_UNFLOW

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

