s Chapter Contents
s Chapter Introduction
NAG Library Manual

# NAG Library Function Documentnag_bsm_price (s30aac)

## 1  Purpose

nag_bsm_price (s30aac) computes the European option price given by the Black–Scholes–Merton formula.

## 2  Specification

 #include #include
 void nag_bsm_price (Nag_OrderType order, Nag_CallPut option, Integer m, Integer n, const double x[], double s, const double t[], double sigma, double r, double q, double p[], NagError *fail)

## 3  Description

nag_bsm_price (s30aac) computes the price of a European call (or put) option for constant volatility, $\sigma$, and risk-free interest rate, $r$, with a possible dividend yield, $q$, using the Black–Scholes–Merton formula (see Black and Scholes (1973) and Merton (1973)). For a given strike price, $X$, the price of a European call with underlying price, $S$, and time to expiry, $T$, is
 $Pcall = Se-qT Φd1 - Xe-rT Φd2$
and the corresponding European put price is
 $Pput = Xe-rT Φ-d2 - Se-qT Φ-d1$
and where $\Phi$ denotes the cumulative Normal distribution function,
 $Φx = 12π ∫ -∞ x exp -y2/2 dy$
and
 $d1 = ln S/X + r-q+ σ2 / 2 T σ⁢T , d2 = d1 - σ⁢T .$
The option price ${P}_{ij}=P\left(X={X}_{i},T={T}_{j}\right)$ is computed for each strike price in a set ${X}_{i}$, $i=1,2,\dots ,m$, and for each expiry time in a set ${T}_{j}$, $j=1,2,\dots ,n$.

## 4  References

Black F and Scholes M (1973) The pricing of options and corporate liabilities Journal of Political Economy 81 637–654
Merton R C (1973) Theory of rational option pricing Bell Journal of Economics and Management Science 4 141–183

## 5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2:     optionNag_CallPutInput
On entry: determines whether the option is a call or a put.
${\mathbf{option}}=\mathrm{Nag_Call}$
A call; the holder has a right to buy.
${\mathbf{option}}=\mathrm{Nag_Put}$
A put; the holder has a right to sell.
Constraint: ${\mathbf{option}}=\mathrm{Nag_Call}$ or $\mathrm{Nag_Put}$.
3:     mIntegerInput
On entry: the number of strike prices to be used.
Constraint: ${\mathbf{m}}\ge 1$.
4:     nIntegerInput
On entry: the number of times to expiry to be used.
Constraint: ${\mathbf{n}}\ge 1$.
5:     x[m]const doubleInput
On entry: ${\mathbf{x}}\left[i-1\right]$ must contain ${X}_{\mathit{i}}$, the $\mathit{i}$th strike price, for $\mathit{i}=1,2,\dots ,{\mathbf{m}}$.
Constraint: ${\mathbf{x}}\left[\mathit{i}-1\right]\ge z\text{​ and ​}{\mathbf{x}}\left[\mathit{i}-1\right]\le 1/z$, where $z={\mathbf{nag_real_safe_small_number}}$, the safe range parameter, for $\mathit{i}=1,2,\dots ,{\mathbf{m}}$.
6:     sdoubleInput
On entry: $S$, the price of the underlying asset.
Constraint: ${\mathbf{s}}\ge z\text{​ and ​}{\mathbf{s}}\le 1.0/z$, where $z={\mathbf{nag_real_safe_small_number}}$, the safe range parameter.
7:     t[n]const doubleInput
On entry: ${\mathbf{t}}\left[i-1\right]$ must contain ${T}_{\mathit{i}}$, the $\mathit{i}$th time, in years, to expiry, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
Constraint: ${\mathbf{t}}\left[\mathit{i}-1\right]\ge z$, where $z={\mathbf{nag_real_safe_small_number}}$, the safe range parameter, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
On entry: $\sigma$, the volatility of the underlying asset. Note that a rate of 15% should be entered as 0.15.
Constraint: ${\mathbf{sigma}}>0.0$.
9:     rdoubleInput
On entry: $r$, the annual risk-free interest rate, continuously compounded. Note that a rate of 5% should be entered as 0.05.
Constraint: ${\mathbf{r}}\ge 0.0$.
10:   qdoubleInput
On entry: $q$, the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08.
Constraint: ${\mathbf{q}}\ge 0.0$.
11:   p[${\mathbf{m}}×{\mathbf{n}}$]doubleOutput
Note: where ${\mathbf{P}}\left(i,j\right)$ appears in this document, it refers to the array element
• ${\mathbf{p}}\left[\left(j-1\right)×{\mathbf{m}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{p}}\left[\left(i-1\right)×{\mathbf{n}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: ${\mathbf{P}}\left(i,j\right)$ contains ${P}_{ij}$, the option price evaluated for the strike price ${{\mathbf{x}}}_{i}$ at expiry ${{\mathbf{t}}}_{j}$ for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$.
12:   failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

## 6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
On entry, argument $⟨\mathit{\text{value}}⟩$ had an illegal value.
NE_INT
On entry, ${\mathbf{m}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{m}}\ge 1$.
On entry, ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{n}}\ge 1$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
NE_REAL
On entry, ${\mathbf{q}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{q}}\ge 0.0$.
On entry, ${\mathbf{r}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{r}}\ge 0.0$.
On entry, ${\mathbf{s}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{s}}\ge ⟨\mathit{\text{value}}⟩$ and ${\mathbf{s}}\le ⟨\mathit{\text{value}}⟩$.
On entry, ${\mathbf{sigma}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{sigma}}>0.0$.
NE_REAL_ARRAY
On entry, ${\mathbf{t}}\left[⟨\mathit{\text{value}}⟩\right]=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{t}}\left[i\right]\ge ⟨\mathit{\text{value}}⟩$.
On entry, ${\mathbf{x}}\left[⟨\mathit{\text{value}}⟩\right]=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{x}}\left[i\right]\ge ⟨\mathit{\text{value}}⟩$ and ${\mathbf{x}}\left[i\right]\le ⟨\mathit{\text{value}}⟩$.

## 7  Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution function, $\Phi$. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum relative error in the expansion is of the order of the machine precision (see nag_cumul_normal (s15abc) and nag_erfc (s15adc)). An accuracy close to machine precision can generally be expected.

## 8  Parallelism and Performance

nag_bsm_price (s30aac) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

None.

## 10  Example

This example computes the prices for six European call options using two expiry times and three strike prices as input. The times to expiry are taken as $0.7$ and $0.8$ years respectively. The stock price is $55$, with strike prices, $58$, $60$ and $62$. The risk-free interest rate is $10%$ per year and the volatility is $30%$ per year.

### 10.1  Program Text

Program Text (s30aace.c)

### 10.2  Program Data

Program Data (s30aace.d)

### 10.3  Program Results

Program Results (s30aace.r)