FunctionName Mark ofIntroduction Purpose d01bdc Example Text 23 nag_quad_1d_fin_smooth One-dimensional quadrature, non-adaptive, finite interval d01dac Example Text 23 nag_quad_2d_fin Two-dimensional quadrature, finite region d01fbc Example Text 23 nag_quad_md_gauss Multidimensional Gaussian quadrature over hyper-rectangle d01fcc Example Text 2 nag_multid_quad_adapt Multidimensional adaptive quadratureNote: this function is scheduled for withdrawal at Mark 25, see Advice on Replacement Calls for Withdrawn/Superseded Functions for further information. d01fdc Example Text 23 nag_quad_md_sphere Multidimensional quadrature, Sag–Szekeres method, general product region or $n$-sphere d01gac Example Text Example Data 2 nag_1d_quad_vals One-dimensional integration of a function defined by data values only d01gbc Example Text 2 nag_multid_quad_monte_carlo Multidimensional quadrature, using Monte–Carlo methodNote: this function is scheduled for withdrawal at Mark 25, see Advice on Replacement Calls for Withdrawn/Superseded Functions for further information. d01gdc Example Text 23 nag_quad_md_numth_vec Multidimensional quadrature, general product region, number-theoretic method d01gyc Example Text 23 nag_quad_md_numth_coeff_prime Korobov optimal coefficients for use in nag_quad_md_numth_vec (d01gdc), when number of points is prime d01gzc Example Text 23 nag_quad_md_numth_coeff_2prime Korobov optimal coefficients for use in nag_quad_md_numth_vec (d01gdc), when number of points is product of two primes d01pac Example Text 23 nag_quad_md_simplex Multidimensional quadrature over an $n$-simplex d01rac Example Text 24 nag_quad_1d_gen_vec_multi_rcomm One-dimensional quadrature, adaptive, finite interval, multiple integrands, vectorized abscissae, reverse communication d01rcc 24 nag_quad_1d_gen_vec_multi_dimreq Determine required array dimensions for nag_quad_1d_gen_vec_multi_rcomm (d01rac) d01rgc Example Text 24 nag_quad_1d_fin_gonnet_vec One-dimensional quadrature, adaptive, finite interval, strategy due to Gonnet, allowing for badly behaved integrands d01sjc Example Text 5 nag_1d_quad_gen_1 One-dimensional quadrature, adaptive, finite interval, strategy due to Piessens and de Doncker, allowing for badly behaved integrands d01skc Example Text 5 nag_1d_quad_osc_1 One-dimensional quadrature, adaptive, finite interval, method suitable for oscillating functions d01slc Example Text 5 nag_1d_quad_brkpts_1 One-dimensional quadrature, adaptive, finite interval, allowing for singularities at user-specified break-points d01smc Example Text 5 nag_1d_quad_inf_1 One-dimensional adaptive quadrature over infinite or semi-infinite interval d01snc Example Text 5 nag_1d_quad_wt_trig_1 One-dimensional adaptive quadrature, finite interval, sine or cosine weight functions d01spc Example Text 5 nag_1d_quad_wt_alglog_1 One-dimensional adaptive quadrature, weight function with end-point singularities of algebraic-logarithmic type d01sqc Example Text 5 nag_1d_quad_wt_cauchy_1 One-dimensional adaptive quadrature, weight function $1/\left(x-c\right)$, Cauchy principal value d01ssc Example Text 5 nag_1d_quad_inf_wt_trig_1 One-dimensional adaptive quadrature, semi-infinite interval, sine or cosine weight function d01tac Example Text 5 nag_1d_quad_gauss_1 One-dimensional Gaussian quadrature, choice of weight functions d01tbc Example Text 23 nag_quad_1d_gauss_wset Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule d01tcc Example Text Example Data 23 nag_quad_1d_gauss_wgen Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule d01uac Example Text 24 nag_quad_1d_gauss_vec One-dimensional Gaussian quadrature, choice of weight functions (vectorized) d01wcc Example Text 5 nag_multid_quad_adapt_1 Multidimensional adaptive quadrature d01xbc Example Text 5 nag_multid_quad_monte_carlo_1 Multidimensional quadrature, using Monte–Carlo method d01zkc 24 nag_quad_opt_set Option setting function d01zlc 24 nag_quad_opt_get Option getting function