
NAG Fortran Compiler Release 7.2 Release Note

March 11, 2024

1 Introduction

Release 7.2 of the NAG Fortran Compiler is a major update.

Customers upgrading from a previous release of the NAG Fortran Compiler will need a new licence key for this release.

See KLICENCE.txt for more information about Kusari Licence Management.

2 Release Overview

Release 7.2 supports all of Fortran 2018, and so the default language level is now −f2018 .

Partial support for OpenMP 4.0 and 4.5 is included in the initial release of 7.2. An update will follow in early 2024
to upgrade that to full support.

3 Compatibility

3.1 Compatibility with Release 7.1

Release 7.2 is fully compatible with Release 7.1.

3.2 Compatibility with Release 7.0

Release 7.2 is compatible with Release 7.0, except that files compiled with the −C=calls option will need to be
recompiled if they contain a procedure with a procedure pointer argument, or a reference to such a procedure.

3.3 Compatibility with Release 6.2

On MacOS the 32-bit ABI mode accessible via −abi=32 has been removed; consequently only 64-bit compilation is
supported and the −abi= switch has been removed entirely.

Other than this, Release 7.2 is fully compatible with Release 6.2 except when coarrays are used, or when the −C=calls
option is used for a subroutine that has an alternate return. Any program that uses these features will need to be
recompiled.

3.4 Compatibility with Release 6.1

Programs which use features from HPF (High Performance Fortran), for example the ILEN intrinsic function or the
HPF LIBRARY module, are no longer supported.

The previously deprecated −abi=64 option on Linux x86-64 has been withdrawn. This option provided an ABI with
64-bit pointers but 32-bit object sizes and subscript arithmetic, and was only present for compatibility with Release
5.1 and earlier.

With the exception of HPF support and the deprecated option removal, Release 7.2 of the NAG Fortran Compiler is
fully compatible with Release 6.1.

1

3.5 Compatibility with Release 6.0

With the exception of HPF support and the deprecated option removal, Release 7.2 of the NAG Fortran Compiler is
compatible with Release 6.0 except that programs that use allocatable arrays of “Parameterised Derived Type” will
need to be recompiled (this only affects module variables and dummy arguments).

3.6 Compatibility with Releases 5.3.1, 5.3 and 5.2

With the exception of HPF support and the deprecated option removal, Release 7.2 of the NAG Fortran Compiler is
fully compatible with Release 5.3.1. It is also fully compatible with Releases 5.3 and 5.2, except that on Windows,
modules or procedures whose names begin with a dollar sign ($) need to be recompiled.

For a program that uses the new “Parameterised Derived Types” feature, it is strongly recommended that all parts
of the program that may allocate, deallocate, initialise or copy a polymorphic variable whose dynamic type might be
a parameterised derived type, should be compiled with Release 7.1 or later.

3.7 Compatibility with Release 5.1

Release 7.2 of the NAG Fortran Compiler is compatible with NAGWare f95 Release 5.1 except that:

• programs that use features from HPF are not supported;

• programs or libraries that use the CLASS keyword, or which contain types that will be extended, need to be
recompiled;

• 64-bit programs and libraries compiled with Release 5.1 on Linux x86-64 (product NPL6A51NA) are binary
incompatible, and need to be recompiled.

4 New Fortran 2018 Features

• The GENERIC statement provides a concise way of declaring generic interfaces. It has the syntax:

GENERIC [, access-spec] :: generic-spec => procedure-name-list

where the optional access-spec is either PUBLIC or PRIVATE, the generic-spec is a generic identifier (name,
ASSIGNMENT(=), OPERATOR(op), or {READ|WRITE}({FORMATTED|UNFORMATTED})), and the procedure-name-list
is a comma-separated list of named procedures.

The access-spec is only permitted if the GENERIC statement is in the specification part of a module. Each named
procedure in the list must have an explicit interface; that is, it must be an internal procedure, module procedure,
or be declared with an interface block or procedure declaration statement that specifies an explicit interface.
Collectively, the procedures must satisfy the usual generic rules about all being functions or all being subroutines,
and being unambiguous.

Apart from the optional access-spec, the GENERIC statement has the same effect as

INTERFACE generic-spec

PROCEDURE procedure-name-list

END INTERFACE

The only advantage is that it is a couple of lines shorter, and can declare the accessibility in the same line.
This syntax is the same as for a generic-binding in a derived type definition, except that the list of names is of
ordinary named procedures instead of type-bound procedures.

For example, the program

Module print_sqrt

Private

Generic,Public :: g => s1, s2

2

Contains

Subroutine s1(x)

Print ’(F10.6)’,Sqrt(x)

End Subroutine

Subroutine s2(n)

Print ’(I10)’,Nint(Sqrt(Real(n)))

End Subroutine

End Module

Program test

Use print_sqrt

Call g(2.0)

Call g(127)

End Program

will print

1.414214

11

• The E0 exponent width specifier can be used on all edit descriptors that allow the exponent width to be specified
(thus E, EN et al, but not D). This specifies formatting with the minimal width for the exponent. For example,

Print ’(7X,3ES10.2E0)’, 1.23, 4.56E24, 7.89D101

will print

1.23E+0 4.56E+24 7.89E+101

• The E, D, EN and ES edit descriptors may have a width of zero on output. This provides minimal width editing
similarly to the I and other edit descriptors; that is, the processor chooses the smallest value for the width w
that does not result in the field being filled with asterisks. This means that leading blanks will be suppressed,
and for E and D, when the scale factor is less than or equal to zero, the optional zero before the decimal symbol
is suppressed.

For example, printing 12.3 with the formats shown below will display the results below with no leading or trailing
blanks.

E0.4 .1230E+02

E0.4E3 .1230E+002

1PE0.4 1.2300E+00

EN0.4 12.3000E+00

ES0.4 1.2300E+01

E0.4E0 .1230E+2

Note that field width has no effect on the format of the exponent; that is, to print a number in the smallest
width requires use of exponent width zero as well (as shown in the last example above).

There is no means of eliminating trailing zeroes in the mantissa part for these edit descriptors (though there is
for the new EX edit descriptor).

• The G0.d edit descriptor is permitted for types Integer, Logical, and Character; in Fortran 2008, this was an i/o
error. In Fortran 2018 it has the same effect as I0 for Integer, L1 for Logical, and A for Character. For example,

Print ’(7X,"start:",3G0.17,":end")’, 123, .True., ’ok’

will print

start:123Tok:end

• The new edit descriptors EXw.d and EXw.d Ee can be used for output of floating-point numbers with a hexadec-
imal significand. The format is

[s] 0X x 0 . x 1x 2. . . exponent
where s is an optional plus or minus sign (+ or −), each x i is a hexadecimal digit (0. . . 9 or A. . . F), and exponent

3

is the binary exponent (power of two) expressed in decimal, with the format P s z 1. . . zn, where if the optional
Ee appears, n is equal to e, and otherwise is the minimum number of digits needed to represent the exponent.
If the exponent is equal to zero, the sign s is a plus sign.

If the number of digits d is zero, the number of mantissa digits xi produced is the smallest number that represents
the internal value exactly. Note that d must not be zero if the radix of the internal value is not a power of two.

For input, the effect of the EX edit descriptor is identical to that of the F edit descriptor.

Note that the value of the initial hexadecimal digit is not standardised, apart from being non-zero. Thus,
depending on the compiler, writing the value 1.0 in EX0.1 might produce 0X1.0P+0, 0X2.0P-1, 0X4.0P-2, or
0X8.0P-3. The NAG Fortran Compiler always shifts the mantissa so that the most significant bit is set, thus
will output 0X8.0P-3 in this case.

• Input of floating-point numbers with list-directed, namelist, and explicit formatting (e.g. the F edit descriptor)
accepts input values in hexadecimal-significand form. That is, the form produced by the EX edit descriptor.
Note that a hexadecimal-significand value always begins with an optional sign followed by the digit zero and the
letter X; that is, +0X, -0X, or 0X, thus there is no ambiguity.

For example, reading ‘-0XA.P-3’ will produce the value -1.25.

As usual for numeric input, lowercase input is treated the same as upper case; thus -0xa.p-3 produces the same
value as -0XA.P-3.

• The elemental intrinsic function OUT OF RANGE returns true if and only if a conversion would be out of range. It
has the syntax:

OUT_OF_RANGE (X, MOLD [, ROUND])

X : type Real or Integer;

MOLD : scalar of type Real or Integer;

ROUND (optional) : scalar of type Logical;

Result : Logical of default kind.

The result is true if and only if the value of X is outside the range of values that can be converted to the type
and kind of MOLD without error. If the MOLD argument is a variable, it need not have a defined value — only its
type and kind are used. The ROUND argument is only allowed when X is type Real and MOLD is type Integer.

For Real to Integer conversions, the default check is whether the value would be out of range for the intrinsic
function INT (X, KIND (MOLD)); this is the same conversion that is used in intrinsic assignment. If the ROUND

argument is present with the value .TRUE., the check is instead whether the value would be out of range for the
intrinsic function NINT (X, KIND (MOLD)).

For example, OUT OF RANGE (127.5, 0 int8) is false, but OUT OF RANGE (127.5, 0 int8, .TRUE.) is true.

If the value of X is an IEEE infinity, OUT OF RANGE will return .TRUE. if and only if the type and kind of MOLD
does not support IEEE infinities. Similarly, if X is an IEEE NaN, the result is true if and only if MOLD does not
support IEEE NaNs.

Note that when checking conversions of type Real of one kind to type Real of another kind (for example,
REAL(real32) to REAL(real16) or REAL(real64) to REAL(real32)), a finite value that is greater than HUGE

(KIND (MOLD)) will be considered out of range, but an infinite value will not be considered out of range.
That is, OUT OF RANGE (1.0E200 real64, 1.0 real32) will return .TRUE., but OUT OF RANGE (IEEE VALUE

(1.0 real64, IEEE POSITIVE INF), 1.0 real32) will return .FALSE..

Although this function is elemental, and can be used in constant expressions (if the value of X is constant and
the ROUND argument is missing or constant), only the X argument is permitted to be an array. The result thus
always has the rank and shape of X.

• The VALUES argument of the intrinsic subroutine DATE AND TIME can be any kind of integer with a decimal
exponent range of at least four; that is, any kind except 8-bit integer. For example,

Program show_year

Use Iso_Fortran_Env

Integer(int16) v(8)

Call Date_And_Time(Values=v)

Print *,’The year is’,v(1)

End Program

4

• The WAIT argument of the intrinsic subroutine EXECUTE COMMAND LINE can be any kind of logical. The CMDSTAT
and EXITSTAT arguments can be any kind of integer with a decimal exponent range of at least four; that is, any
kind except 8-bit integer. For example,

Program ok

Use Iso_Fortran_Env

Logical(logical8) :: w = .True._logical8

Integer(int16) :: cstat

Integer(int64) :: estat

Call Execute_Command_Line(’echo ok’,w,estat,cstat)

If (estat/=0 .Or. cstat/=0) Print *,’Bad STAT’,estat,cstat

End Program
will, assuming ‘echo’ is the Unix echo command, display

ok

• The intrinsic subroutines GET COMMAND, GET COMMAND ARGUMENT and GET ENVIRONMENT VARIABLE now have an
optional ERRMSG argument at the end of the argument list. If an error occurs (i.e., a positive value would
be assigned to the STATUS argument), the ERRMSG argument will be assigned an explanatory message. If no
error occurs (zero or a negative value would be assigned to the STATUS argument), the ERRMSG argument remains
unchanged. Note that the effect on the ERRMSG argument occurs (or does not occur) even if the STATUS argument
is omitted. But as it is unchanged when no error occurs, it is not a substitute for the STATUS argument for
detecting errors.

For example, executing this program

Program test

Character(200) msg,value

Integer status

Call Get_Environment_Variable(’Does Not Exist’,value,status,Errmsg=msg)

If (status>0) Print *,Trim(msg)

End Program

will, unless there is an environment variable called ‘Does Not Exist’, print something like

Environment variable does not exist

• The intrinsic function IMAGE INDEX has two additional forms:

IMAGE_INDEX(COARRAY, SUB, TEAM)

IMAGE_INDEX(COARRAY, SUB, TEAM_NUMBER)

TEAM : scalar of type TEAM TYPE, Intent(In);
TEAM NUMBER : scalar of type Integer, Intent(In).

The meanings of the COARRAY and SUB arguments are unchanged, except that the subscripts are interpreted as
being for the specified team. The return value is likewise the image index in the specified team.

• The random-number generator (intrinsic RANDOM NUMBER) is now per-image. Fortran 2008 permitted a compiler
to use a single random-number stream, shared between all images; Fortran 2018 does not permit that, instead
requiring each image to have its own random-number state.

• The new intrinsic subroutine RANDOM INIT initialises the random-number generator on the invoking image. It
has the syntax:

CALL RANDOM_INIT (REPEATABLE, IMAGE_DISTINCT)

REPEATABLE : scalar of type Logical, Intent(In);
IMAGE DISTINCT : scalar of type Logical, Intent(In).

If IMAGE DISTINCT is true, the initial state (seed) of the random-number generator will be different on every
invoking image; otherwise, the initial state will not depend on which image it is. If REPEATABLE is true, each
execution of the program will use the same initial seed (image-dependent if IMAGE DISTINCT is also true);
otherwise, each execution of the program will use a different initial seed.

The default for the NAG Fortran Compiler, when no call to RANDOM INIT is made, is REPEATABLE=false and
IMAGE DISTINCT=true.

5

• There are additional constants, types, and procedures in the standard intrinsic module IEEE ARITHMETIC, pro-
viding additional support for IEEE (ISO/IEC 60559) arithmetic. Three of the pre-existing procedures now have
additional, optional, arguments.

– The named constant IEEE AWAY is of type IEEE ROUND TYPE, and represents a rounding mode that rounds
ties away from zero. The IEEE standard only requires this rounding mode for decimal, and binary hardware
does not support this, so it cannot be used.

– The elemental function IEEE FMA performs a fused multiply-add operation. It has the syntax:

IEEE_FMA (A, B, C)

A : type Real;
B : same type and kind as A;
C : same type and kind as A.

Result : Same type and kind as A.

The result of the function is the value of (A×B)+C with only one rounding; that is, the whole operation is
computed mathematically and only rounded to the format of A at the end. For example, IEEE OVERFLOW is
not signalled if A×B overflows, but only if the final result is out of range.

Restriction: this function must not be invoked when the kind of A is not an IEEE format, i.e. if
IEEE SUPPORT DATATYPE (A) returns false.

– The pure subroutine IEEE GET MODES retrieves the halting modes, rounding modes, and underflow mode in
a single object. Its syntax is:

IEEE_GET_MODES (MODES)

MODES : scalar of type IEEE MODES TYPE, Intent(Out).

The retrieved modes can be used by IEEE SET MODES to restore the modes.

– The pure subroutine IEEE GET ROUNDING MODE, which retrieves the current rounding mode, now has an
optional argument to specify the radix. The syntax is thus now:

IEEE_GET_ROUNDING_MODE (ROUND_VALUE [, RADIX])

ROUND VALUE : type IEEE ROUND TYPE, Intent(Out);
RADIX (optional) : Integer, Intent(In), must be equal to two or ten.

The ROUND VALUE argument is assigned the current rounding mode for the specified radix. If RADIX does
not appear, the binary rounding mode is assigned.

– The elemental function IEEE INT converts an IEEE Real value to Integer with a specific rounding mode.
It has the syntax:

IEEE_INT (A, ROUND [, KIND])

A : type Real;
ROUND : type IEEE ROUND TYPE;
KIND (optional) : scalar Integer constant expression;
Result : type Integer, with kind KIND if KIND appears, otherwise default kind.

The value of A is rounded to an integer using the rounding mode specified by ROUND. If that value is
representable in the result kind, the result has that value; otherwise, the result is processor-dependent and
IEEE INVALID is signalled.

This operation is either the convertToInteger{round} or the convertToIntegerExact{round} operation
specified by the IEEE standard. If it is the latter, and IEEE INVALID was not signalled, but A was not
already an integer, IEEE INEXACT is signalled.

Restriction: this function must not be invoked when the kind of A is not an IEEE format, i.e. if
IEEE SUPPORT DATATYPE (A) returns false.

– The elemental functions IEEE MAX NUM, IEEE MAX NUM MAG, IEEE MIN NUM, IEEE MIN NUM MAG perform max-
imum/minimum operations ignoring NaN values. If an argument is a signalling NaN, IEEE INVALID is
raised, if only one argument is a NaN, the result is the other argument; only if both arguments are NaNs
is the result a NaN. The syntax for IEEE MAX NUM is:

IEEE_MAX_NUM (X, Y)

6

X : type Real;
Y : same type and kind as X;
Result : same type and kind as X.

The value of the result is the maximum value of X and Y, ignoring NaN.

Restriction: this function must not be invoked when the kind of X is not an IEEE format, i.e. if
IEEE SUPPORT DATATYPE (X) returns false.

The IEEE MAX NUM MAG has the same syntax (apart from the name), and the result is whichever of X and Y

has the greater magnitude. The same restriction applies.

The IEEE MIN NUM has the same syntax (apart from the name), and the result is the minimum value of X
and Y, ignoring NaN. The same restriction applies.

The IEEE MIN NUM MAG has the same syntax (apart from the name), and the result is whichever of X and Y

has the smaller magnitude. The same restriction applies.

– The derived type IEEE MODES TYPE contains the all the floating-point modes: the halting modes, the round-
ing modes, and the underflow mode. It is used by the IEEE GET MODES and IEEE SET MODES subroutines.

– The elemental functions IEEE QUIET {EQ|NE|LT|LE|GT|GE} compare two IEEE format numbers, without
raising any signal if an operand is a quiet NaN. If an operand is a signalling NaN, the IEEE INVALID

exception is raised. IEEE QUIET EQ and IEEE QUIET NE are exactly the same as == and /=, apart from only
being usable on IEEE format numbers. The IEEE QUIET EQ function has the syntax:

IEEE_QUIET_EQ (A, B)

A : type Real (any IEEE kind);
B : same type and kind as A;

Result : Logical of default kind.

The syntax of IEEE QUIET NE et al is the same, except for the name of the function.

Restriction: these functions must not be invoked when the kind of X is not an IEEE format, i.e. if
IEEE SUPPORT DATATYPE (X) returns false.

– The elemental function IEEE REAL converts an Integer or IEEE format Real value to the specified IEEE
format Real value. Its syntax is:

IEEE_REAL (A, [, KIND])

A : type Real or Integer;
KIND (optional) : scalar Integer constant expression;
Result : type Real, with kind KIND if KIND appears, otherwise default kind.

If the value of A is representable in the kind of the result, that value is the result. Otherwise, the value of
A is rounded to the kind of the result using the current rounding mode.

Restriction: this function must not be invoked when the kind of A or the result is not an IEEE format,
i.e. if IEEE SUPPORT DATATYPE (A) or if IEEE SUPPORT DATATYPE(REAL(0,KIND)) returns false.

– The pure subroutine IEEE SET MODES sets the halting modes, rounding modes, and underflow mode to the
state when a previous call to IEEE GET MODES was made. Its syntax is:

IEEE_SET_MODES (MODES)

MODES : scalar of type IEEE MODES TYPE, Intent(In).

The value of MODES must be one that was obtained via IEEE GET MODES.

– The pure subroutine IEEE SET ROUNDING MODE, which sets the rounding mode, now has an optional argu-
ment to specify the radix. The syntax is thus now:

IEEE_SET_ROUNDING_MODE (ROUND_VALUE [, RADIX])

ROUND VALUE : type IEEE ROUND TYPE, Intent(In);
RADIX (optional) : Integer, Intent(In), must be equal to two or ten.

The rounding mode for the specified radix is set to ROUND VALUE. If RADIX does not appear, the binary
rounding mode is set.

Restriction: This subroutine must not be invoked unless there is some X (with radix RADIX if it is
present) for which both IEEE SUPPORT DATATYPE(X) and IEEE SUPPORT ROUNDING(ROUND VALUE,X) are
true.

7

– The elemental functions IEEE SIGNALING {EQ|NE|LT|LE|GT|GE} compare two IEEE format numbers, rais-
ing the IEEE INVALID exception if an operand is a NaN (whether quiet or signalling). IEEE SIGNALING LT,
IEEE SIGNALING LE, IEEE SIGNALING GT and IEEE SIGNALING GE are exactly the same as <, <=, > and >=,
apart from only being usable on IEEE format numbers. The IEEE SIGNALING EQ function has the syntax:

IEEE_SIGNALING_EQ (A, B)

A : type Real (any IEEE kind);
B : same type and kind as A;

Result : Logical of default kind.

The syntax of IEEE SIGNALING NE et al is the same, except for the name of the function.

Restriction: these functions must not be invoked when the kind of X is not an IEEE format, i.e. if
IEEE SUPPORT DATATYPE (X) returns false.

– The elemental function IEEE SIGNBIT queries the sign bit of an IEEE format number. It has the syntax:

IEEE_SIGNBIT (X)

X : type Real (any IEEE kind);

Result : Logical of default kind.

The result is true if and only if the sign bit is set (indicating negative for any value that is not a NaN).

Restriction: this function must not be invoked when the kind of X is not an IEEE format, i.e. if
IEEE SUPPORT DATATYPE (X) returns false.

– The elemental function IEEE RINT now has an optional argument to specify the rounding required. The
syntax is thus now:

IEEE_RINT (X [, ROUND])

X : type Real;
ROUND (optional) : type IEEE ROUND TYPE.

Result : Same type and kind as X.

When ROUND is present, the result is the value of X rounded to an integer according to the mode specified
by ROUND; this is the operation the IEEE standard calls roundToIntegral{rounding}. When ROUND is
absent, the result is the value of X rounded to an integer according to the current rounding mode; this is
the operation the IEEE standard calls roundToIntegralExact.

Restriction: this function must not be invoked when the kind of X is not an IEEE format, i.e. if
IEEE SUPPORT DATATYPE (X) returns false.

• The named constant C PTRDIFF T has been added to the intrinsic module ISO C BINDING. This is the integer
kind that corresponds to the C type ptrdiff t, which is an integer large enough to hold the difference between
two pointers. For example, the interface

Interface

Function diff_cptr(a,b) Bind(C)

Use Iso_C_Binding

Type(C_ptr),Value :: a, b

Integer(C_ptrdiff_t) diff_cptr

End Function

End Interface

interoperates with the C function

ptrdiff_t diff_cptr(void *a,void *b) {

return a - b;

}

In the intrinsic module ISO C BINDING, the procedures C LOC and C FUNLOC are considered to be pure procedures,
and C F POINTER and C F PROCPOINTER are considered to be impure. When it is used within a pure procedure,
the argument of C FUNLOC must also be a pure procedure.

8

•• The default accessibility in a module of entities accessed from another module (via the USE statement) can be
controlled by specifying that module name in a PUBLIC or PRIVATE statement, overriding the default accessibility
of other entities in the importing module. For example, in

Module mymod

Use Iso_Fortran_Env

Real(real32) x

Integer(int64) y

Private Iso_Fortran_Env

End Module

all the entities in ISO FORTRAN ENV are by default PRIVATE in module mymod, without needing to list them
individually.

This new default accessibility can be overridden by an explicit PUBLIC or PRIVATE declaration. Also, if an entity
in a remote module (two or more USE statements away) is accessed by more than one intervening module, it is
default PRIVATE only if every route to the entity is default PRIVATE, and default PUBLIC if any route is default
PUBLIC. For example, in

Module remote

Real a,b

End Module

Module route_one

Use remote

Private remote

End Module

Module route_two

Use remote

End Module

Module my_module

Use route_one

Use route_two

Private route_one

End Module

the variables A and B in module REMOTE are PUBLIC in module MY MODULE, because they are accessible via module
ROUTE TWO which is default PUBLIC.

• The IMPLICIT NONE statement can now have TYPE and EXTERNAL specifiers. Its full syntax is now:

IMPLICIT NONE [([implicit-none-specifier-list])]

where implicit-none-specifier-list is a comma-separated list of the keywords EXTERNAL and TYPE. No keyword
may appear more than once in the list. If the list does not appear, or if TYPE appears in the list, no other
IMPLICIT statement may appear in the scoping unit.

The semantics of:
IMPLICIT NONE ()

and
IMPLICIT NONE (TYPE)

are identical to that of
IMPLICIT NONE

If the keyword EXTERNAL appears, a procedure with an implicit interface that is referenced in the scoping unit
must be given the EXTERNAL attribute explicitly: that is, it must be declared in an EXTERNAL statement, in a type
declaration statement that has the EXTERNAL attribute, or in a procedure declaration statement. For example,

Subroutine sub(x)

Implicit None (External)

Integer f

Print *,f(x)

End Subroutine

will produce an error for the reference to the function F, because it does not have the EXTERNAL attribute.

If the keyword EXTERNAL appears and the keyword TYPE does not appear, implicit typing is not disabled, and
other IMPLICIT statements may appear in the scoping unit. If both the keywords TYPE and EXTERNAL appear,
both implicit typing is disabled, and the EXTERNAL attribute is required for implicit-interface procedures.

9

• The IMPORT statement can appear in BLOCK constructs and nested subprograms. By default, such scoping units
have access to all entities in the host scope by host association, so by itself this is only useful as (compiler-checked)
documentation. For example,

Subroutine outer(x,y)

Real,Intent(InOut) :: x, y(:)

...

Contains

Subroutine inner

Import :: x, y

...

• Control over host association is provided by the IMPORT,NONE, IMPORT,ALL, and IMPORT,ONLY statements. Like
other IMPORT statements, they can appear only in interface bodies, BLOCK constructs, and contained subprograms,
and appear in between USE statements and other specification statements.

The IMPORT,NONE statement specifies that no entities in the host scope are accessible by host association. That
is the default for interface bodies other than separate module procedure interfaces. If an IMPORT,NONE statement
appears in a scoping unit, no other IMPORT statement may appear. For example, in

Subroutine outer(x,y)

Real,Intent(InOut) :: x, y(:)

...

Contains

Subroutine inner

Import,None

Implicit Integer (a-z)

Read *,x

Print *,x

End Subroutine

End Subroutine

the X in subroutine INNER is not a reference to the X in its host OUTER, but is an implicitly typed (Integer)
variable that is local to INNER.

The IMPORT,ALL statement specifies that all host entities are accessed. That means that a declaration which
would otherwise make a host entity inaccessible (so-called “shadowing”), is invalid. For example, in

Subroutine outer(x,y)

Real,Intent(InOut) :: x, y(:)

...

Contains

Subroutine inner

Import,All

Integer,External :: y

...

the declaration of Y inside INNER is invalid, and will produce a compilation error. If an IMPORT,ALL statement
appears in a scoping unit, no other IMPORT statement may appear.

The IMPORT,ONLY statement specifies that only host entities named in IMPORT,ONLY statements are accessible
by host association. If an IMPORT,ONLY statement appears in a scoping unit, all other IMPORT statements must
have the ONLY keyword. For example, in

Subroutine outer(x,y,z)

Real,Intent(InOut) :: x, y(:),z

...

Contains

Subroutine inner

Import,Only:x,y

z = x + y

the references to X and Y in INNER are references to the host (OUTER) entities, but the reference to Z in INNER is
to an implicitly-typed local variable.

• An implied DO loop in an array constructor, or in a DATA statement, may now have an Integer type-spec preceding
the loop control. The syntax for such a loop in the array constructor is

(ac-value-list , integer-type-spec :: ac-do-variable = from, to [, step])

10

and for such a loop in a DATA statement is
(data-i-do-object-list , integer-type-spec :: data-i-do-variable = from, to [, step])

where the integer-type-spec is any type-spec beginning with the keyword INTEGER.

The effect is that inside the loop, the implied-DO variable (ac-do-variable or data-i-do-variable) has the type and
kind specified by the integer-type-spec, regardless of the type and kind it might have outside the loop.

Note that if there is an entity with the same name in the scope containing the loop, it must be a scalar variable;
for example, it cannot be a procedure or type name.

For example,
Real x

Print *, [(x, Integer :: x = 1, 10)]

is valid, and results in the output of the integer values 1 to 10. Similarly,
Real x, y(10)

Data (y(x),Integer::x=1,10,2) / 5*0 /

is valid, and initialises the odd-numbered elements of Y to zero.

This is mostly useful when subscripts may exceed the range of default integer kind, for example,
Real,Pointer :: a(:)

...

Print *, [(f(a(i)), Integer(int64) :: i = Lbound(a,1,int64), Ubound(a,1,int64))]

will apply function F to each element of A, even if the bounds are, for example 20000000000:20000000005.

• The DO CONCURRENT construct can have locality specifiers LOCAL, LOCAL INIT, and SHARED. These locality speci-
fiers determine how a variable can be used within and without the loop, and cannot be applied to the loop index
variables, which are always effectively LOCAL. There is also a DEFAULT(NONE) locality specifier, which requires
all variables used in DO CONCURRENT to be given an explicit locality. The revised syntax of the DO CONCURRENT

statement, ignoring labels and construct names, is:
DO CONCURRENT concurrent-header [locality-spec]...

where concurrent-header is the same as before, and each locality-spec is one of:

LOCAL (variable-name-list)

LOCAL INIT (variable-name-list)

SHARED (variable-name-list)

DEFAULT (NONE)

A variable that appears in a LOCAL or LOCAL INIT specifier must be a rather ordinary variable: it must not
have the ALLOCATABLE or OPTIONAL attribute, must not have an allocatable ultimate component, and must not
be a coarray or an assumed-size array. If it is polymorphic, it must have the POINTER attribute. Finally, it
must be permitted to appear in a variable definition context: for example, it cannot be INTENT(IN). The effect
of LOCAL and LOCAL INIT is that the variable inside the construct is completely separate from the one outside
the construct; if LOCAL, it begins each iteration undefined, and if LOCAL INIT, it begins each iteration with the
value of the outside variable. This ensures that LOCAL and LOCAL INIT variables cannot cause any dependency
between iterations.

A variable that is SHARED is the same variable inside the construct as outside. If it is given a value by any
iteration, it must not be referenced or given a value by any other iteration. If it is allocatable or a pointer, it
similarly must only be allocated, deallocated, or pointer-assigned by a single iteration. If a discontiguous array
is SHARED, it must not be passed as an actual argument to a contiguous dummy argument (i.e. the dummy must
be assumed-shape or a pointer, and must not have the CONTIGUOUS attribute).

Providing locality specifiers for variables in a DO CONCURRENT construct not only improves the readability of the
code, but makes it easier for the compiler to parallelise the loop, perhaps with a suitable compiler option. (At
Release 7.2, the NAG Fortran Compiler has no such option.)

• The arithmetic IF statement is treated as a Deleted feature. (This is because the behaviour when the expression
is an IEEE NaN is undefined, and can have no good definition.) For example, if the file del.f90 contains

Subroutine sub(x)

Real,Intent(In) :: x

If (x) 1,2,3

1 Stop 1

2 Stop 2

3 Stop 3

End Subroutine

11

this warning message will be produced:
Deleted feature used: del.f90, line 3: Arithmetic IF statement

If the −Error=Deleted option is used, this will be treated as an error.

• The DO construct with a label is considered to be Obsolescent (it is effectively replaced by the END DO statement
and construct labels). Furthermore, the non-block DO construct is treated as a Deleted feature. A non-block
DO is either two or more nested DO loops with a shared DO termination label, or a DO loop with a terminating
statement other than END DO or CONTINUE. (This is because these are hard to understand, error-prone, and better
functionality has been available via the block DO construct since Fortran 90.) For example, if the file obsdel.f90
contains

Subroutine sub(w,x,y)

Real,Intent(InOut) :: w(:),x(:,:), y(:)

Integer i,j

Do 100 i=1,Size(w)

w(i) = w(i)**2 + 4*w(i) - 4

100 Continue

Do 200 j=1,Size(x,2)

Do 200 i=1,Size(x,1)

If (x(i,j)<0) Go To 200

x(i,j) = Sqrt(x(i,j)+1)

200 Continue

Do 300 i=1,Size(y)

If (y(i)<0) Go To 300

y(i) = Log(y(i))

300 Print *,y(i)

End Subroutine
these warning messages will be produced:

Obsolescent: obsdel.f90, line 4: DO statement with label (100)

Obsolescent: obsdel.f90, line 7: DO statement with label (200)

Obsolescent: obsdel.f90, line 8: DO statement with label (200)

Deleted feature used: obsdel.f90, line 11: 200 is a shared DO termination label

Obsolescent: obsdel.f90, line 12: DO statement with label (300)

Deleted feature used: obsdel.f90, line 15: DO 300 ends neither with CONTINUE nor ENDDO

• The FORALL statement and construct are considered to be Obsolescent. This is because it usually has worse
performance than ordinary DO or DO CONCURRENT. For example, if the file obs.f90 contains

Subroutine sub(a,b,c)

Real,Intent(InOut) :: a(:)

Real,Intent(In) :: b(:),c

Integer i

Forall(i=1:Size(a))

a(i) = b(i)**2 - c

End Forall

End Subroutine
this warning message will be produced:

Obsolescent: obs.f90, line 5: FORALL construct

• If the Fortran language level is 2018 or higher (the default), extension messages are produced for the use of
non-standard intrinsic modules such as F90 KIND or OMP LIB.

5 Fortran 2023 support

The NAG Fortran compiler supports the features from the recently revised and published Fortran 2023 standard that
are listed below.

• A line in free source form can be up to 10000 (ten thousand) characters long. If the −f2023 option was not used,
an extension message will be produced for any line longer than 132 characters. (The NAG Fortran compiler
continues to accept lines of any length, but lines longer than 10000 characters are reported as a NAG extension,
not a Fortran 2023 extension.)

12

• The intrinsic inquiry function SELECTED LOGICAL KIND returns the kind value for a specified size of Logical. It
has the following syntax:

SELECTED_LOGICAL_KIND (BITS)

BITS : scalar Integer;

Result : scalar Integer of default kind.

The result is the kind type parameter value for type Logical that specifies a kind whose size is at least BITS

bits; if BITS is greater than the storage size of the largest kind of Logical, the result is −1. Thus any value of
BITS less than or equal to eight will return the kind of a single-byte Logical (as all known compilers support
single-byte Logical). With the NAG Fortran compiler, the result will be −1 if BITS is greater than 64, as its
largest supported Logical kind has 64 bits.

• The standard intrinsic module ISO FORTRAN ENV contains additional named constants, supplying the kind type
parameter values for Logical kinds with the indicated bit sizes: LOGICAL8, LOGICAL16, LOGICAL32 and LOGICAL64.
If there is no kind of Logical whose storage size is exactly the size indicated, the constant has the value −1.

• The AT edit descriptor can be used for output of character data. The character data are output with trailing
blanks omitted, as if each element of the output item were surrounded with a call to the intrinsic function TRIM.

For example,

Character(100) :: a(3)

a(1) = ’o’

a(2) = ’ka’

a(3) = ’y’

Print ’(8X,3AT)’, a

will display the line

okay

with no trailing blanks.

The AT edit descriptor is not allowed for input (READ statements).

6 Additional OpenMP support

OpenMP 4.0 and 4.5 are partially supported at this time. This includes the SIMD and TARGET constructs, including
DO SIMD and TARGET DATA, and clauses such as the LINEAR clause. A forthcoming update will complete the support
of OpenMP 4.0 and 4.5.

7 Additional error checking

• A warning message is issued if the field width in an edit descriptor, either in a FORMAT statement or in a constant
character string used as a format, might be too small for output of some values. For example, the program

Program na

Read *,x

Print 100,x

100 Format(’X has the value ’,E9.3)

End Program

will produce the warning message

Warning: na.f90, line 4: In E9.3 the width 9 may be too small for output of some numbers

If the field width is too small for output of any finite number (an IEEE NaN only needs a width of three), the
message will say that, e.g. if we change E9.3 in the example to E9.7, it will produce the warning

Warning: na.f90, line 4: Field width too small for output of finite numbers - the E9.7

edit descriptor will produce all asterisks

and if the field width is less than three, the message is again changed, e.g. for E2.1, the warning is

13

Warning: na.f90, line 4: Field width of 2 for the E edit descriptor will inevitably

produce all asterisks as output

• Appearance of the REC= or POS= specifiers with the default unit, e.g. with UNIT=*, is detected as an error at
compile time. That unit is a sequential formatted unit, and those specifiers cannot be used with sequential
input/output. For example, compiling

Program badio

Write(*,’(A)’,Rec=999) ’Oops’

End Program

produces the error

Error: badio.f90, line 2: REC= and UNIT=* are not compatible

• Calling a procedure with an implicit interface, when that procedure appears elsewhere in the file and is elemental,
is detected as an error at compile time. For example, compiling

Program c

Real a(10)

Call d(a,1.0)

Print *,a

End Program

Elemental Subroutine d(x,y)

Real,Intent(Out) :: x

Real,Intent(In) :: y

x = y

End Subroutine

produces the error

Error: c.f90: Explicit interface required for ELEMENTAL procedure D referenced from C

• The most obvious cases of modifying an active team variable in a CHANGE TEAM construct are detected as an
error at compile time. The Fortran standard prohibits such changes, to allow a compiler to use the active team
variable throughout the construct without any need to make a copy of its data. For example, compiling

Subroutine teamswap(team1,team2)

Use Iso_Fortran_Env

Type(team_type),Intent(InOut) :: team1,team2

Type(team_type) tmp

Change Team (team2)

tmp = team1 ! Okay.

team1 = team2 ! Okay.

team2 = tmp ! BAD

End Team

End Subroutine

produces the error message

Error: teamswap.f90, line 8: Variable TEAM2 on left-hand side of assignment statement

is the active team value for the CHANGE TEAM statement at line 5 of teamswap.f90

8 Other enhancements

• The low-order bits in double precision and quad precision RANDOM NUMBER now have complete entropy. In previous
releases, although the number sequence had complete entropy, the low-order bits (21 bits in double precision,
and 53 bits in quad precision) were not random. (This would only affect a simulation if it needed more than 32
bits of randomness in each individual double precision value.)

The new method does take significantly longer than before to produce the pseudo-random numbers, but the per-
formance is still competitive with other compilers. The older, faster method may be selected by the −random=5.3
option, and the new method may be confirmed with the −random=7.2 option. These options affect use of
RANDOM NUMBER in the file(s) being compiled only; separate files may be compiled with different options and
combined in the resulting program.

14

• The −gline option, which causes a traceback to be produced on error termination, can now be used with either
the −coarray=cosmp option or the −openmp option. In CoSMP mode, the number of the image (in the initial
team) that caused error termination will be reported, e.g.

ERROR STOP: failatend

pco391.f90, line 20: Error occurred in PCO391:SUB

pco391.f90, line 18: Called by PCO391:SUB

pco391.f90, line 11: Called by PCO391:TEST

pco391.f90, line 7: Called by PCO391

Error termination initiated by image 2

and in OpenMP mode, the thread number created by a PARALLEL construct is reported, e.g.

ERROR STOP: failatend

suy008.f90, line 19: Error occurred in SUY008:SUB

suy008.f90, line 17: Called by SUY008:SUB

suy008.f90, line 10: Thread 8 created by OpenMP PARALLEL construct

suy008.f90, line 8: Called by SUY008:TEST

suy008.f90, line 2: Called by SUY008

• Comments extending past the standard line length are reported separately from statement text that extends
past the standard line length.

• The −xldarg option passes the next argument on the command line to the linker phase in the position where it
occurs, and without any translation (unlike the −Wl, option, which takes a comma-separated option list).

For example,

nagfor a.o -xldarg -pathlist=abc,xyz b.lib

will typically invoke the linker phase as

gcc a.o -pathlist=abc,xyz b.lib NAG-rts-specifications

whereas

nagfor a.o -Wl,-pathlist=abc,xyz b.lib

would typically invoke the linker phase as

gcc a.o b.lib NAG-rts-specifications -pathlist=abc xyz

• The −fpplonglines option directs the fpp preprocessor not to break output lines that are longer than 132 char-
acters (in free source form). This may be useful if the output of fpp is to be passed to another tool, perhaps the
fpp preprocessor itself, that does not expect #line directives in the middle of a token that is continued across
lines.

• The −w=longlines option suppresses warnings about lines in free source form that are longer than permitted by
the Fortran standard; this is 132 characters up to Fortran 2018, and 10000 characters for Fortran 2023.

The NAG Fortran Compiler accepts free source form lines of any length.

• The −u=all option specifies that all −u= sub-options are active. In this release, this is −u=external , −u=locality ,
−u=sharing , and −u=type.

• The −u=external option specifies that IMPLICIT NONE (EXTERNAL) is in effect. This requires that external and
dummy procedures must either have an explicit interface, or be explicitly given the EXTERNAL attribute.

For example, if the file bad.f90 contains

Program bad

Call oops

End Program

compiling it with the −u=external option will produce the error

Error: bad.f90, line 3: External procedure OOPS does not have the EXTERNAL attribute

15

• The −u=locality specifies that all DO CONCURRENT constructs are treated as if they had specified DEFAULT (NONE);
that locality specifier requires all variables referenced in the DO CONCURRENT construct to have explicit locality.

For example, if the file b.f90 contains

Program b

Real x(100)

Do Concurrent(i=1:100)

x(i) = i**2.0

End Do

Print *,x

End Program

compiling it with the −u=locality option will produce the error

Error: b.f90, line 4: Locality not specified for X in DO CONCURRENT with DEFAULT(NONE)

• The −Warn=double real literal option reports the presence of default double precision literal constants in the
program. These are real literal constants with a D exponent letter (and thus, no kind specifier). The report is
as a Note, unless inexactness of the conversion of the decimal to default double precision is detected, in which
case it is a warning. For example, with the program

Program dlits

Print *,123d0

Print *,0.123d0

End Program

the reported warnings are as follows:

Note: dlits.f90, line 2: Default double precision literal constant 123D0

Warning: dlits.f90, line 3: Inexact default double precision literal constant 0.123D0

This option may be useful to detect the presence of default double precision literal constants in a program that
is intended to have a specified kind type parameter that might not be double precision.

• The −Warn=unkind real literal option reports default real literal constants in the program that have no kind
specifier. The report is as a Note, unless inexactness of the conversion of the decimal to default real is detected
as being inexact, in which case it is a warning. For example, with the program

Program lits

Print *,123.0

Print *,0.123

End Program

the reported warnings are as follows:

Note: lits.f90, line 2: Real literal constant 123.0 has no kind specifier

Warning: lits.f90, line 3: Inexact real literal constant 0.123 has no kind specifier

This option may be useful to detect the presence of default (single precision) real literal constants in a program
that is intended to be in double precision, or to have a specified kind type parameter that might not be single
precision.

• The −Error=class option specifies treating warning messages in class as errors. The value of class must be one
of the following (not case-sensitive):

Ancient use of an obsolete and non-standard FORTRAN 77 extension;
Deleted use of a feature that has been deleted from the Fortran standard;
Extension use of a feature that is an extension to the Fortran standard;
Obsolescent use of a feature that the Fortran standard says is obsolescent;
Questionable valid but questionable usage that may indicate a programming error;
Warning any warning-class message other than the above;
Any Warning any of the above.

Note that −Error=Obsolescent implies −Error=Deleted , as all deleted features were previously obsolescent. Also,
−Error=Extension implies −Error=Ancient , as ancient obsolete extensions are extensions.

Also note that messages do not have their prefix changed, e.g. a warning message will still begin ‘Warning:’,
but if the −colour option is used, the message colour will be coloured as an error.

16

• The −strict95 option, which produced obsolescence (warning) messages for the use of ‘CHARACTER*’ syntax, is
now enabled by default, and is thus ignored. Instead, there is a new option −nonstrict , which suppresses those
messages, and also suppresses extension messages when the declared type of a value for a polymorphic allocatable
component is an extension of the declared type of the component (this was always intended to be allowed, but
there was a wording error in Fortran 2003 which was not corrected until Fortran 2018).

• Additional −target=machine options are available on Linux and Windows; machine may be nehalem, west-
mere, sandybridge, ivybridge, haswell, broadwell, skylake, cannonlake, icelake, zen, or native (which
targets the current machine).

• The polish option−elcase=X sets the case to use for exponent letters (E or D): X must be one of Asis, lowercase,
UPPERCASE, or an abbreviation thereof; the default is −elcase=UPPERCASE . The interpretation of X is
not case-sensitive (e.g. −elcase=u is the same as −elcase=U). Note that −elcase=Asis is only available for basic
polishing (=polish), not in Enhanced Polish (=epolish) or any other tool (e.g. =unifyprecision).

• The polish option −canonicalise floating literals specifies canonicalisation of floating-point literal constants. The
canonical form of a floating-point literal always has a decimal point, with at least one digit before it and after
it. If it has an exponent letter of E, the exponent is always non-zero. If there is an exponent, the exponent letter
is always followed by a sign, and the exponent value has no leading zero. For example,

Print *, .1, 1e0, 3d0, 2d-04

would be reformatted (with −elcase=U) as:

Print *, 0.1, 1.0, 3.0D+0, 2.0D-4

• When the −openmp option is used, Polish now auto-terminates OpenMP DO constructs, and indents the body
thereof. For example, polishing

!$OMP do

do i=1,10

a(i) = i

end do

previously produced

!$Omp Do

Do i=1,10

a(i) = i

End Do

but now produces

!$Omp Do

Do i=1,10

a(i) = i

End Do

!$Omp End Do

• Enhanced polish can add parentheses to argumentless SUBROUTINE statements and CALL statements. By default,
the parentheses are omitted (except for a SUBROUTINE statement with a BIND(C) clause). The −subroutine parens
option will cause the parentheses to be produced.

For example, using enhanced polish with −subroutine parens (and no other option) on

CALL mysub

will produce the output

Call mysub()

• When generating Makefile dependencies, the −odir dir option specifies that the object files will be located in a
different directory (not the current working directory). For example, the object file that depends on “file.f90”
will be considered to be “dir/file.o” instead of simply “file.o”.

17

