
Fortran 2018 Overview

March 11, 2024

1 Introduction

This document describes the new parts of the Fortran 2018 language that are supported by the latest release of the
NAG Fortran Compiler.

The compiler release in which a feature was made available is indicated by square brackets; for example, a feature
marked as ‘[5.3]’ was first available in Release 5.3.

2 Overview of Fortran 2018

The new features of Fortran 2018 that are supported by the NAG Fortran Compiler can be grouped as follows:

• Data declaration

• Data usage and computation

• Input/output

• Execution control

• Intrinsic procedures and modules

• Program units and procedures

• Advanced C interoperability

• Updated IEEE arithmetic capabilities

• Advanced coarray programming

3 Data declaration

• [5.3] If an object is initialised (in a type declaration statement or component definition statement), its array
bounds and character length can be used in its initialisation expression.

• [7.0] The EQUIVALENCE and COMMON statements, and the BLOCK DATA program unit, are considered to be obso-
lescent (and reported as such when the −f2018 option is used).

• [7.1] Assumed-rank dummy arguments accept actual arguments of any rank; they assume the rank from the
actual argument. This rank may be zero; that is, the actual argument may be scalar. Furthermore, assumed-
rank dummy arguments may have the ALLOCATABLE or POINTER attribute, and thus accept allocatable/pointer
variables of any rank.

The syntax is as follows:

Real,Dimension(..) :: a, b

Integer :: c(..)

That declares three variables (which must be dummy arguments) to be assumed-rank.

The use of assumed-rank dummy arguments within Fortran is extremely limited; basically, the intrinsic inquiry
functions can be used, and there is a SELECT RANK construct, but other than that they may only appear as
actual arguments to other procedures where they correspond to another assumed-rank argument.

The main use of assumed rank is for advanced C interoperability (see later section).

Here is an extremely simple example of use within Fortran:

1

Program assumed_rank_example

Real x(1,2),y(3,4,5,6,7)

Call showrank(1.5)

Call showrank(x)

Call showrank(y)

Contains

Subroutine showrank(a)

Real,Intent(In) :: a(..)

Print *,’Rank is’,Rank(a)

End Subroutine

End Program

That will produce the output

Rank is 0

Rank is 2

Rank is 5

• [7.1] The TYPE(*) type specifier can be used to declare scalar, assumed-size, and assumed-rank dummy argu-
ments. Such an argument is called assumed-type; the corresponding actual argument may be of any type. It
must not have the ALLOCATABLE, CODIMENSION, INTENT (OUT), POINTER, or VALUE attribute.

An assumed-type variable is extremely limited in the ways it can be used directly in Fortran:

– it may be passed as an actual argument to another assumed-type dummy argument;

– it may appear as the first argument to the intrinsic functions IS CONTIGUOUS, LBOUND, PRESENT, SHAPE,
SIZE, or UBOUND;

– it may be used as the argument of the function C LOC (in the ISO C BINDING intrinsic module}.

Other than these contexts, it cannot be used in any other way at all. Note that if it is an array, you cannot
subscript it or create an array section from it.

This is mostly useful for interoperating with C programs (see later section). Note that in a non-generic procedure
reference, a scalar argument can be passed to an assumed-type argument that is an assumed-size array.

• [7.2] The IMPLICIT NONE statement can now have TYPE and EXTERNAL specifiers. Its full syntax is now:

IMPLICIT NONE [([implicit-none-specifier-list])]

where implicit-none-specifier-list is a comma-separated list of the keywords EXTERNAL and TYPE. No keyword
may appear more than once in the list. If the list does not appear, or if TYPE appears in the list, no other
IMPLICIT statement may appear in the scoping unit.

The semantics of:
IMPLICIT NONE ()

and
IMPLICIT NONE (TYPE)

are identical to that of
IMPLICIT NONE

If the keyword EXTERNAL appears, a procedure with an implicit interface that is referenced in the scoping unit
must be given the EXTERNAL attribute explicitly: that is, it must be declared in an EXTERNAL statement, in a type
declaration statement that has the EXTERNAL attribute, or in a procedure declaration statement. For example,

Subroutine sub(x)

Implicit None (External)

Integer f

Print *,f(x)

End Subroutine

will produce an error for the reference to the function F, because it does not have the EXTERNAL attribute.

If the keyword EXTERNAL appears and the keyword TYPE does not appear, implicit typing is not disabled, and
other IMPLICIT statements may appear in the scoping unit. If both the keywords TYPE and EXTERNAL appear,
both implicit typing is disabled, and the EXTERNAL attribute is required for implicit-interface procedures.

2

• [7.2] The IMPORT statement can appear in BLOCK constructs and nested subprograms. By default, such scoping
units have access to all entities in the host scope by host association, so by itself this is only useful as (compiler-
checked) documentation. For example,

Subroutine outer(x,y)

Real,Intent(InOut) :: x, y(:)

...

Contains

Subroutine inner

Import :: x, y

...

• [7.2] Control over host association is provided by the IMPORT,NONE, IMPORT,ALL, and IMPORT,ONLY statements.
Like other IMPORT statements, they can appear only in interface bodies, BLOCK constructs, and contained sub-
programs, and appear in between USE statements and other specification statements.

The IMPORT,NONE statement specifies that no entities in the host scope are accessible by host association. That
is the default for interface bodies other than separate module procedure interfaces. If an IMPORT,NONE statement
appears in a scoping unit, no other IMPORT statement may appear. For example, in

Subroutine outer(x,y)

Real,Intent(InOut) :: x, y(:)

...

Contains

Subroutine inner

Import,None

Implicit Integer (a-z)

Read *,x

Print *,x

End Subroutine

End Subroutine

the X in subroutine INNER is not a reference to the X in its host OUTER, but is an implicitly typed (Integer)
variable that is local to INNER.

The IMPORT,ALL statement specifies that all host entities are accessed. That means that a declaration which
would otherwise make a host entity inaccessible (so-called “shadowing”), is invalid. For example, in

Subroutine outer(x,y)

Real,Intent(InOut) :: x, y(:)

...

Contains

Subroutine inner

Import,All

Integer,External :: y

...

the declaration of Y inside INNER is invalid, and will produce a compilation error. If an IMPORT,ALL statement
appears in a scoping unit, no other IMPORT statement may appear.

The IMPORT,ONLY statement specifies that only host entities named in IMPORT,ONLY statements are accessible
by host association. If an IMPORT,ONLY statement appears in a scoping unit, all other IMPORT statements must
have the ONLY keyword. For example, in

Subroutine outer(x,y,z)

Real,Intent(InOut) :: x, y(:),z

...

Contains

Subroutine inner

Import,Only:x,y

z = x + y

the references to X and Y in INNER are references to the host (OUTER) entities, but the reference to Z in INNER is
to an implicitly-typed local variable.

3

4 Data usage and computation

• [7.1] The SELECT RANK construct facilitates use of assumed rank objects within Fortran. It has the syntax

[construct-name] SELECT RANK ([assoc_name =>] assumed-rank-variable-name)

[rank-stmt

block]...

END SELECT [construct-name]

where rank-stmt is one of:

RANK (scalar-int-constant-expression) [construct-name]

RANK (*) [construct-name]

RANK DEFAULT [construct-name]

In any particular SELECT RANK construct, there must not be more than one RANK DEFAULT statement, or more
than one RANK (*) statement, or more than RANK (integer) with the same value integer expression. If the
assumed-rank variable has the ALLOCATABLE or POINTER attribute, the RANK (*) statement is not permitted.

The block following a RANK statement with an integer constant expression is executed if the assumed-rank variable
is associated with a non-assumed-rank actual argument that has that rank, and is not an assumed-size array.
Within the block it acts as if it were an assumed-shape array with that rank.

The block following a RANK (*) is executed if the ultimate argument is an assumed-size array. Within the block
it acts as if it were declared with bounds ‘(1:*)’; if different bounds or rank are desired, this can be passed to
another procedure using sequence association.

The block following a RANK DEFAULT statement is executed if no other block is selected. Within its block, it is
still an assumed-rank variable, i.e. there is no change.

Here is a simple example of the SELECT RANK construct.

Program select_rank_example

Integer :: a = 123, b(1,2) = Reshape([10,20], [1,2]), c(1,3,1) = 777, d(1,1,1,1,1)

Call show(a)

Call show(b)

Call show(c)

Call show(d)

Contains

Subroutine show(x)

Integer x(..)

Select Rank(x)

Rank (0)

Print 1,’scalar’,x

Rank (1)

Print 1,’vector’,x

Rank (2)

Print 1,’matrix’,x

Rank (3)

Print 1,’3D array’,x

Rank Default

Print *,’Rank’,Rank(x),’not supported’

End Select

1 Format(1x,a,*(1x,i0,:))

End Subroutine

End Program

This will produce the output

scalar 123

matrix 10 20

3D array 777 777 777

Rank 5 not supported

4

5 Input/output

• [7.0] The RECL= specifier in an INQUIRE statement for an unconnected unit or file now assigns the value −1 to
the variable. For a unit or file connected with ACCESS=’STREAM’, it assigns the value −2 to the variable. Under
previous Fortran standards, the variable became undefined.

• [7.1] The SIZE= specifier can be used in a READ statement without ADVANCE=’NO’, that is, in a READ statement
with no ADVANCE= specifier, or one with an explicit ADVANCE=’YES’. For example,

Character(65536) buf

Integer nc

Read(*,’(A)’,Size=nc) buf

Print *,’The number of characters on that line was’,nc

Note that SIZE= is not permitted with list-directed or namelist formatting; that would be pointless, as there are
no edit descriptors with such formatting and thus no characters to be counted by SIZE=.

• [7.2] The E0 exponent width specifier can be used on all edit descriptors that allow the exponent width to be
specified (thus E, EN et al, but not D). This specifies formatting with the minimal width for the exponent. For
example,

Print ’(7X,3ES10.2E0)’, 1.23, 4.56E24, 7.89D101

will print

1.23E+0 4.56E+24 7.89E+101

• [7.2] The E, D, EN and ES edit descriptors may have a width of zero on output. This provides minimal width
editing similarly to the I and other edit descriptors; that is, the processor chooses the smallest value for the
width w that does not result in the field being filled with asterisks. This means that leading blanks will be
suppressed, and for E and D, when the scale factor is less than or equal to zero, the optional zero before the
decimal symbol is suppressed.

For example, printing 12.3 with the formats shown below will display the results below with no leading or trailing
blanks.

E0.4 .1230E+02

E0.4E3 .1230E+002

1PE0.4 1.2300E+01

EN0.4 12.3000E+00

ES0.4 1.2300E+01

E0.4E0 .1230E+2

Note that field width has no effect on the format of the exponent; that is, to print a number in the smallest
width requires use of exponent width zero as well (as shown in the last example above).

There is no means of eliminating trailing zeroes in the mantissa part for these edit descriptors (though there is
for the new EX edit descriptor).

• [7.2] The G0.d edit descriptor is permitted for types Integer, Logical, and Character; in Fortran 2008, this was
an i/o error. In Fortran 2018 it has the same effect as I0 for Integer, L1 for Logical, and A for Character. For
example,

Print ’(7X,"start:",3G0.17,":end")’, 123, .True., ’ok’

will print

start:123Tok:end

• [7.2] The new edit descriptors EXw.d and EXw.d Ee can be used for output of floating-point numbers with a
hexadecimal significand. The format is

[s] 0X x 0 . x 1x 2. . . exponent
where s is an optional plus or minus sign (+ or −), each x i is a hexadecimal digit (0. . . 9 or A. . . F), and exponent
is the binary exponent (power of two) expressed in decimal, with the format P s z 1. . . zn, where if the optional

5

Ee appears, n is equal to e, and otherwise is the minimum number of digits needed to represent the exponent.
If the exponent is equal to zero, the sign s is a plus sign.

If the number of digits d is zero, the number of mantissa digits xi produced is the smallest number that represents
the internal value exactly. Note that d must not be zero if the radix of the internal value is not a power of two.

For input, the effect of the EX edit descriptor is identical to that of the F edit descriptor.

Note that the value of the initial hexadecimal digit is not standardised, apart from being non-zero. Thus,
depending on the compiler, writing the value 1.0 in EX0.1 might produce 0X1.0P+0, 0X2.0P-1, 0X4.0P-2, or
0X8.0P-3. The NAG Fortran Compiler always shifts the mantissa so that the most significant bit is set, thus
will output 0X8.0P-3 in this case.

• [7.2] Input of floating-point numbers with list-directed, namelist, and explicit formatting (e.g. the F edit descrip-
tor) accepts input values in hexadecimal-significand form. That is, the form produced by the EX edit descriptor.
Note that a hexadecimal-significand value always begins with an optional sign followed by the digit zero and the
letter X; that is, +0X, -0X, or 0X, thus there is no ambiguity.

For example, reading ‘-0XA.P-3’ will produce the value -1.25.

As usual for numeric input, lowercase input is treated the same as upper case; thus -0xa.p-3 produces the same
value as -0XA.P-3.

6 Execution control

• [6.2] The expression in an ERROR STOP or STOP statement can be non-constant. It is still required to be default
Integer or default Character.

• [6.2] The ERROR STOP and STOP statements now have an optional QUIET= specifier, which is preceded by a comma
following the optional stop-code. This takes a Logical expression; if it is true at runtime then the STOP (or ERROR
STOP) does not output any message, and information about any IEEE exceptions that are signalling will be
suppressed. For example,

STOP 13, QUIET = .True.

will not display the usual ‘STOP: 13’, but simply do normal termination, with a process exit status of 13. Note
that this means that the following two statements are equivalent:

STOP, QUIET=.True.

STOP ’message not output’, QUIET=.TRUE.

• [7.2] The arithmetic IF statement has been deleted; this is because the behaviour when the expression is an
IEEE NaN is undefined, and can have no good definition. It still remains in the NAG Fortran Compiler, but is
reported as Deleted feature. For example, if the file del.f90 contains

Subroutine sub(x)

Real,Intent(In) :: x

If (x) 1,2,3

1 Stop 1

2 Stop 2

3 Stop 3

End Subroutine

this warning message will be produced:

Deleted feature used: del.f90, line 3: Arithmetic IF statement

• [7.2] The DO CONCURRENT construct can have locality specifiers LOCAL, LOCAL INIT, and SHARED. These locality
specifiers determine how a variable can be used within and without the loop, and cannot be applied to the
loop index variables, which are always effectively LOCAL. There is also a DEFAULT(NONE) locality specifier, which
requires all variables used in DO CONCURRENT to be given an explicit locality. The revised syntax of the DO

CONCURRENT statement, ignoring labels and construct names, is:
DO CONCURRENT concurrent-header [locality-spec]...

where concurrent-header is the same as before, and each locality-spec is one of:

6

LOCAL (variable-name-list)

LOCAL INIT (variable-name-list)

SHARED (variable-name-list)

DEFAULT (NONE)

A variable that appears in a LOCAL or LOCAL INIT specifier must be a rather ordinary variable: it must not
have the ALLOCATABLE or OPTIONAL attribute, must not have have an allocatable ultimate component, and must
not be a coarray or an assumed-size array. If it is polymorphic, it must have the POINTER attribute. Finally, it
must be permitted to appear in a variable definition context: for example, it cannot be INTENT(IN). The effect
of LOCAL and LOCAL INIT is that the variable inside the construct is completely separate from the one outside
the construct; if LOCAL, it begins each iteration undefined, and if LOCAL INIT it begins each iteration with the
value of the outside variable. This ensures that LOCAL and LOCAL INIT variables cannot cause any dependency
between iterations.

A variable that is SHARED is the same variable inside the construct as outside. If it is given a value by any
iteration, it must not be referenced or given a value by any other iteration. If it is allocatable or a pointer, it
similarly must only be allocated, deallocated, or pointer-assigned by a single iteration. If a discontiguous array
is SHARED, it must not be passed as an actual argument to a contiguous dummy argument (i.e. the dummy must
be assumed-shape or a pointer, and must not have the CONTIGUOUS attribute).

• [7.2] The DO construct with a label is considered to be Obsolescent (it is effectively replaced by the END DO

statement and construct labels). Furthermore, the non-block DO construct has been deleted (but remains in the
NAG Fortran Compiler, reported as a Deleted feature). A non-block DO is either two or more nested DO loops
with a shared DO termination label, or a DO loop with a terminating statement other than END DO or CONTINUE.
(These are obsolescent/deleted because these are hard to understand, error-prone, and better functionality has
been available via the block DO construct since Fortran 90.) For example, if the file obsdel.f90 contains

Subroutine sub(w,x,y)

Real,Intent(InOut) :: w(:),x(:,:), y(:)

Integer i,j

Do 100 i=1,Size(w)

w(i) = w(i)**2 + 4*w(i) - 4

100 Continue

Do 200 j=1,Size(x,2)

Do 200 i=1,Size(x,1)

If (x(i,j)<0) Go To 200

x(i,j) = Sqrt(x(i,j)+1)

200 Continue

Do 300 i=1,Size(y)

If (y(i)<0) Go To 300

y(i) = Log(y(i))

300 Print *,y(i)

End Subroutine
these warning messages will be produced:

Obsolescent: obsdel.f90, line 4: DO statement with label (100)

Obsolescent: obsdel.f90, line 7: DO statement with label (200)

Obsolescent: obsdel.f90, line 8: DO statement with label (200)

Deleted feature used: obsdel.f90, line 11: 200 is a shared DO termination label

Obsolescent: obsdel.f90, line 12: DO statement with label (300)

Deleted feature used: obsdel.f90, line 15: DO 300 ends neither with CONTINUE nor ENDDO

• [7.2] The FORALL statement and construct are considered to be Obsolescent. This is because it usually has worse
performance than ordinary DO or DO CONCURRENT. For example, if the file obs.f90 contains

Subroutine sub(a,b,c)

Real,Intent(InOut) :: a(:)

Real,Intent(In) :: b(:),c

Integer i

Forall(i=1:Size(a))

a(i) = b(i)**2 - c

End Forall

End Subroutine
this warning message will be produced:

Obsolescent: obs.f90, line 5: FORALL construct

7

7 Intrinsic procedures and modules

• [6.2] The intrinsic subroutine MOVE ALLOC now has optional STAT and ERRMSG arguments. The STAT argument
must be of type Integer, with a decimal exponent range of at least four (i.e. not an 8-bit integer); it is assigned
the value zero if the subroutine executes successfully, and a nonzero value otherwise. The ERRMSG argument must
be of type Character with default kind. If STAT is present and assigned a nonzero value, ERRMSG will be assigned
an explanatory message (if it is present); otherwise, ERRMSG will retain its previous value (if any).

For example,

INTEGER,ALLOCATABLE :: x(:),y(:)

INTEGER istat

CHARACTER(80) emsg

...

CALL MOVE_ALLOC(x,y,istat,emsg)

IF (istat/=0) THEN

PRINT *,’Unexpected error in MOVE_ALLOC: ’,TRIM(emsg)

The purpose of these arguments is to catch errors in multiple image coarray allocation/deallocation, such as
STAT STOPPED IMAGE and STAT FAILED IMAGE.

• [7.1] The DIM argument to the intrinsic functions ALL, ANY, FINDLOC, IALL, IANY, IPARITY, MAXLOC, MAXVAL,
MINLOC, MINVAL, NORM2, PARITY, PRODUCT and SUM can be an optional dummy argument, as long as it is present
at execution time. For example,

Subroutine sub(x,n)

Real,Intent(In) :: x(:,:,:)

Integer,Intent(In),Optional :: n

If (Present(n)) Then

Print *,Norm2(x,n) ! Rank two array result.

Else

Print *,Norm2(x) ! Scalar result.

End If

End Subroutine

• Integer and Logical arguments to intrinsic procedures that were previously required to be of default kind no
longer have that requirement, except for RANDOM SEED. The changes are as follows:

– [7.2] The VALUES argument of the intrinsic subroutine DATE AND TIME can be any kind of integer with a
decimal exponent range of at least four; that is, any kind except 8-bit integer. For example,

Program show_year

Use Iso_Fortran_Env

Integer(int16) v(8)

Call Date_And_Time(Values=v)

Print *,’The year is’,v(1)

End Program

– [7.2] The WAIT argument of the intrinsic subroutine EXECUTE COMMAND LINE can be any kind of logical. The
CMDSTAT and EXITSTAT arguments can be any kind of integer with a decimal exponent range of at least
four; that is, any kind except 8-bit integer. For example,

Program ok

Use Iso_Fortran_Env

Logical(logical8) :: w = .True._logical8

Integer(int16) :: cstat

Integer(int64) :: estat

Call Execute_Command_Line(’echo ok’,w,estat,cstat)

If (estat/=0 .Or. cstat/=0) Print *,’Bad STAT’,estat,cstat

End Program

will, assuming ‘echo’ is the Unix echo command, display

8

ok

• [7.1] Specific intrinsic functions are considered to be obsolescent (and reported as such with the −f2018 option).
In the case of a function that is both specific and generic, e.g. SQRT, the obsolescent usage is passing as an actual
argument, use as a procedure interface, or being the target of a procedure pointer assignment.

• [7.1] The intrinsic inquiry function RANK returns the dimensionality of its argument. It has the following syntax:

RANK (A)

A : data object of any type:

Result : scalar Integer of default kind.

The result is the rank of A, that is, zero for scalar A, one if A is a one-dimensional array, and so on.

This function can be used in a constant expression except when A is an assumed-rank variable.

• [7.2] The random-number generator (intrinsic RANDOM NUMBER) is now per-image. Fortran 2008 permitted a
compiler to use a single random-number stream, shared between all images; Fortran 2018 does not permit that,
instead requiring each image to have its own random-number state.

• [7.2] The new intrinsic subroutine RANDOM INIT initialises the random-number generator on the invoking image.
It has the syntax:

CALL RANDOM_INIT (REPEATABLE, IMAGE_DISTINCT)

REPEATABLE : scalar of type Logical, Intent(In);
IMAGE DISTINCT : scalar of type Logical, Intent(In).

If IMAGE DISTINCT is true, the initial state (seed) of the random-number generator will be different on every
invoking image; otherwise, the initial state will not depend on which image it is. If REPEATABLE is true, each
execution of the program will use the same initial seed (image-dependent if IMAGE DISTINCT is also true);
otherwise, each execution of the program will use a different initial seed.

The default for the NAG Fortran Compiler, when no call to RANDOM INIT is made, is REPEATABLE=false and
IMAGE DISTINCT=true.

• [7.1] The intrinsic function REDUCE performs user-defined array reductions. It has the following syntax:

REDUCE (ARRAY, OPERATION [, MASK, IDENTITY, ORDERED]) or

REDUCE (ARRAY, OPERATION DIM [, MASK, IDENTITY, ORDERED])

ARRAY : array of any type;

OPERATION : pure function with two arguments, each argument being scalar, non-allocatable, non-
pointer, non-polymorphic non-optional variables with the same declared type and type parameters as
ARRAY; if one argument has the ASYNCHRONOUS, TARGET or VALUE attribute, the other must also have
that attribute; the result must be a non-polymorphic scalar variable with the same type and type
parameters as ARRAY;

DIM : scalar Integer in the range 1 to N, where N is the rank of ARRAY;

MASK : type Logical, and either scalar or an array with the same shape as ARRAY;

IDENTITY : scalar with the same declared type and type parameters as ARRAY;

ORDERED : scalar of type Logical;

Result : Same type and type parameters as ARRAY.

9

The result is ARRAY reduced by the user-supplied OPERATION. If DIM is absent, the whole (masked) ARRAY is
reduced to a scalar result. If DIM is present, the result has rank N -1 and the shape of ARRAY with dimension DIM

removed; each element of the result is the reduction of the masked elements in that dimension.

If exactly one element contributes to a result value, that value is equal to the element; that is, OPERATION is only
invoked when more that one element appears.

If no elements contribute to a result value, the IDENTITY argument must be present, and that value is equal to
IDENTITY.

For example,

Module triplet_m

Type triplet

Integer i,j,k

End Type

Contains

Pure Type(triplet) Function tadd(a,b)

Type(triplet),Intent(In) :: a,b

tadd%i = a%i + b%i

tadd%j = a%j + b%j

tadd%k = a%k + b%k

End Function

End Module

Program reduce_example

Use triplet_m

Type(triplet) a(2,3)

a = Reshape([triplet(1,2,3),triplet(1,2,4), &

triplet(2,2,5),triplet(2,2,6), &

triplet(3,2,7),triplet(3,2,8)], [2,3])

Print 1, Reduce(a,tadd)

Print 1, Reduce(a,tadd,1)

Print 1, Reduce(a,tadd,a%i/=2)

Print 1, Reduce(Array=a,Dim=2,Operation=tadd)

Print 1, Reduce(a, Mask=a%i/=2, Dim=1, Operation=tadd, Identity=triplet(0,0,0))

1 Format(1x,6(’triplet(’,I0,’,’,I0,’,’,I0,’)’,:,’; ’))

End Program

This will produce the output:

triplet(12,12,33)

triplet(2,4,7); triplet(4,4,11); triplet(6,4,15)

triplet(8,8,22)

triplet(6,6,15); triplet(6,6,18)

triplet(2,4,7); triplet(0,0,0); triplet(6,4,15)

• [7.0] The intrinsic atomic subroutines ATOMIC ADD, ATOMIC AND, ATOMIC CAS, ATOMIC FETCH ADD,
ATOMIC FETCH AND, ATOMIC FETCH OR, ATOMIC FETCH XOR, ATOMIC OR and ATOMIC XOR are described under
Advanced coarray programming.

• [7.1] The intrinsic collective subroutines CO BROADCAST, CO MAX, CO MIN, CO REDUCE and CO SUM are described
under Advanced coarray programming.

• [7.0] The intrinsic functions COSHAPE, EVENT QUERY, FAILED IMAGES, GET TEAM, IMAGE STATUS, STOPPED IMAGES,
and TEAM NUMBER. The changes to the intrinsic functions IMAGE INDEX, NUM IMAGES, and THIS IMAGE, are de-
scribed under Advanced coarray programming.

• The elemental intrinsic function OUT OF RANGE returns true if and only if a conversion would be out of range. It
has the syntax:

OUT_OF_RANGE (X, MOLD [, ROUND])

X : type Real or Integer;

10

MOLD : scalar of type Real or Integer;

ROUND (optional) : scalar of type Logical;

Result : Logical of default kind.

The result is true if and only if the value of X is outside the range of values that can be converted to the type
and kind of MOLD without error. If the MOLD argument is a variable, it need not have a defined value — only its
type and kind are used. The ROUND argument is only allowed when X is type Real and MOLD is type Integer.

For Real to Integer conversions, the default check is whether the value would be out of range for the intrinsic
function INT (X, KIND (MOLD)); this is the same conversion that is used in intrinsic assignment. If the ROUND

argument is present with the value .TRUE., the check is instead whether the value would be out of range for the
intrinsic function NINT (X, KIND (MOLD)).

For example, OUT OF RANGE (127.5, 0 int8) is false, but OUT OF RANGE (127.5, 0 int8, .TRUE.) is true.

If the value of X is an IEEE infinity, OUT OF RANGE will return .TRUE. if and only if the type and kind of MOLD
does not support IEEE infinities. Similarly, if X is an IEEE NaN, the result is true if and only if MOLD does not
support IEEE NaNs.

Note that when checking conversions of type Real of one kind to type Real of another kind (for example,
REAL(real32) to REAL(real16) or REAL(real64) to REAL(real32)), a finite value that is greater than HUGE

(KIND (MOLD)) will be considered out of range, but an infinite value will not be considered out of range.
That is, OUT OF RANGE (1.0E200 real64, 1.0 real32) will return .TRUE., but OUT OF RANGE (IEEE VALUE

(1.0 real64, IEEE POSITIVE INF), 1.0 real32) will return .FALSE..

Although this function is elemental, and can be used in constant expressions (if the value of X is constant and
the ROUND argument is missing or constant), only the X argument is permitted to be an array. The result thus
always has the rank and shape of X.

• [mostly 7.2] There are additional constants, types, and procedures in the standard intrinsic module IEEE ARITHMETIC,
providing additional support for IEEE (ISO/IEC 60559) arithmetic. These are described in the section “Updated
IEEE arithmetic capabilities”.

• [7.2] Fortran 2018 requires diagnosis of the use of a non-standard intrinsic module such as F90 KIND. In the NAG
Fortran Compiler, the OpenMP module OMP LIB is also an intrinsic module, and so its use will be diagnosed as
an extension.

8 Program units and procedures

• [7.0] If a dummy argument of a function that is part of an OPERATOR generic has the VALUE attribute, it is no
longer required to have the INTENT(IN) attribute.

For example,

INTERFACE OPERATOR(+)

MODULE PROCEDURE logplus

END INTERFACE

...

PURE LOGICAL FUNCTION logplus(a,b)

LOGICAL,VALUE :: a,b

logplus = a.OR.b

END FUNCTION

• [7.0] If the second argument of a subroutine that is part of an ASSIGNMENT generic has the VALUE attribute, it is
no longer required to have the INTENT(IN) attribute.

For example,

INTERFACE ASSIGNMENT(=)

MODULE PROCEDURE asgnli

END INTERFACE

...

11

PURE SUBROUTINE asgnli(a,b)

LOGICAL,INTENT(OUT) :: a

INTEGER,VALUE :: b

DO WHILE (IAND(b,NOT(1))/=0)

b = IEOR(IAND(b,1),SHIFTR(b,1))

END DO

a = b/=0 ! Odd number of "1" bits.

END SUBROUTINE

• [7.0] With the−recursive or the−f2018 option, procedures are recursive by default. For example, this subprogram

INTEGER FUNCTION factorial(n) RESULT(r)

IF (n>1) THEN

r = n*factorial(n-1)

ELSE

r = 1

END IF

END FUNCTION

is valid, just as if it had been explicitly declared with the RECURSIVE keyword.

This does not apply to assumed-length character functions (where the result is declared with CHARACTER(LEN=*);
these remain prohibited from being declared RECURSIVE.

Note that procedures that are RECURSIVE by default are excluded from the effects of the −save option, exactly
as if they were explicitly declared RECURSIVE.

• [7.0] Elemental procedures may now be recursive, whether explicitly declared RECURSIVE or by default (when
the −f2018 or −recursive options are specified). For example,

ELEMENTAL RECURSIVE INTEGER FUNCTION factorial(n) RESULT(r)

INTEGER,INTENT(IN) :: n

IF (n>1) THEN

r = n*factorial(n-1)

ELSE

r = 1

END IF

END FUNCTION

may be invoked with

PRINT *,factorial([1,2,3,4,5])

to print the first five factorials.

• The NON RECURSIVE keyword explicitly declares that a procedure will not be called recursively. For example,

NON_RECURSIVE INTEGER FUNCTION factorial(n) RESULT(r)

r = 1

DO i=2,n

r = r*i

END DO

END FUNCTION

In Fortran 2008 and older standards, procedures are non-recursive by default, so this keyword has no effect
unless the −recursive or −f2018 is being used.

• Generic resolution can use the number of procedure arguments; that is, if one procedure has more non-optional
procedure arguments than the other has optional plus non-optional procedure arguments, the procedures are
considered to be unambiguous.

For example,

12

MODULE npa_example

INTERFACE g

MODULE PROCEDURE s1,s2

END INTERFACE

CONTAINS

SUBROUTINE s1(a)

EXTERNAL a

CALL a

END SUBROUTINE

SUBROUTINE s2(b,a)

EXTERNAL b,a

CALL b

CALL a

END SUBROUTINE

END MODULE

This example does not conform to the Fortran 2008 rules for unambiguous generic procedures, because the
argument A distinguishes by position but not by keyword, the argument B distinguish by keyword but not by
position, and the positional disambiguator (A) does not appear earlier in the list than the keyword disambiguator
(B).

• [7.2] The GENERIC statement provides a concise way of declaring generic interfaces. It has the syntax:

GENERIC [, access-spec] :: generic-spec => procedure-name-list

where the optional access-spec is either PUBLIC or PRIVATE, the generic-spec is a generic identifier (name,
ASSIGNMENT(=), OPERATOR(op), or {READ|WRITE}({FORMATTED|UNFORMATTED})), and the procedure-name-list
is a comma-separated list of named procedures.

The access-spec is only permitted if the GENERIC statement is in the specification part of a module. Each named
procedure in the list must have an explicit interface; that is, it must be an internal procedure, module procedure,
or be declared with an interface block or procedure declaration statement that specifies an explicit interface.
Collectively, the procedures must satisfy the usual generic rules about all being functions or all being subroutines,
and being unambiguous.

Apart from the optional access-spec, the GENERIC statement has the same effect as

INTERFACE generic-spec

PROCEDURE procedure-name-list

END INTERFACE

The only advantage is that it is a couple of lines shorter, and can declare the accessibility in the same line.
This syntax is the same as for a generic-binding in a derived type definition, except that the list of names is of
ordinary named procedures instead of type-bound procedures.

For example, the program

Module print_sqrt

Private

Generic,Public :: g => s1, s2

Contains

Subroutine s1(x)

Print ’(F10.6)’,Sqrt(x)

End Subroutine

Subroutine s2(n)

Print ’(I10)’,Nint(Sqrt(Real(n)))

End Subroutine

End Module

Program test

Use print_sqrt

Call g(2.0)

Call g(127)

End Program

13

will print

1.414214

11

• [7.2] The default accessibility in a module of entities accessed from another module (via the USE statement)
can be controlled by specifying that module name in a PUBLIC or PRIVATE statement, overriding the default
accessibility of other entities in the importing module. For example, in

Module mymod

Use Iso_Fortran_Env

Real(real32) x

Integer(int64) y

Private Iso_Fortran_Env

End Module

all the entities in ISO FORTRAN ENV are by default PRIVATE in module mymod, without needing to list them
individually.

This new default accessibility can be overridden by an explicit PUBLIC or PRIVATE declaration. Also, if an entity
in a remote module (two or more USE statements away) is accessed by more than one intervening module, it is
default PRIVATE only if every route to the entity is default PRIVATE, and default PUBLIC if any route is default
PUBLIC. For example, in

Module remote

Real a,b

End Module

Module route_one

Use remote

Private remote

End Module

Module route_two

Use remote

End Module

Module my_module

Use route_one

Use route_two

Private route_one

End Module

the variables A and B in module REMOTE are PUBLIC in module MY MODULE, because they are accessible via module
ROUTE TWO which is default PUBLIC.

9 Advanced C interoperability

• [7.0] The C FUNLOC function from the intrinsic module ISO C BINDING accepts a non-interoperable procedure
argument. The C FUNPTR value produced should not be converted to a C function pointer, but may be converted
to a suitable (also non-interoperable) Fortran procedure pointer with the C F PROCPOINTER subroutine from
ISO C BINDING. For example,

USE ISO_C_BINDING

ABSTRACT INTERFACE

SUBROUTINE my_callback_interface(arg)

CLASS(*) arg

END SUBROUTINE

END INTERFACE

TYPE,BIND(C) :: mycallback

TYPE(C_FUNPTR) :: callback

END TYPE

14

...

TYPE(mycallback) cb

PROCEDURE(my_callback_interface),EXTERNAL :: sub

cb%callback = C_FUNLOC(sub)

...

PROCEDURE(my_callback_interface),POINTER :: pp

CALL C_F_PROCPOINTER(cb%callback,pp)

CALL pp(...)

This functionality may be useful in a mixed-language program when the C FUNPTR value is being stored in a
data structure that is manipulated by C code.

• [7.0] The C LOC function from the intrinsic module ISO C BINDING accepts an array of non-interoperable type,
and the C F POINTER function accepts an array pointer of non-interoperable type. The array must still be
non-polymorphic and contiguous.

This improves interoperability with mixed-language C and Fortran programming, by letting the program pass
an opaque “handle” for a non-interoperable array through a C routine or C data structure, and reconstruct the
Fortran array pointer later. This kind of usage was previously only possible for scalars.

• [7.2] The named constant C PTRDIFF T has been added to the intrinsic module ISO C BINDING. This is the integer
kind that corresponds to the C type ptrdiff t, which is an integer large enough to hold the difference between
two pointers. For example, the interface

Interface

Function diff_cptr(a,b) Bind(C)

Use Iso_C_Binding

Type(C_ptr),Value :: a, b

Integer(C_ptrdiff_t) diff_cptr

End Function

End Interface

interoperates with the C function

ptrdiff_t diff_cptr(void *a,void *b) {

return a - b;

}

• [7.2] In the intrinsic module ISO C BINDING, the procedures C LOC and C FUNLOC are considered to be pure
procedures, and C F POINTER and C F PROCPOINTER are considered to be impure. When it is used within a pure
procedure, the argument of C FUNLOC must also be a pure procedure.

• [7.1] Assumed-rank variables are permitted to be dummy arguments of a BIND(C) routine, even those with the
ALLOCATABLE or POINTER attribute. An assumed-rank argument is passed by reference as a “C descriptor”; it is
then up to the C routine to decode what that means. The C descriptor, along with several utility functions for
manipulating it, is defined by the source file ISO Fortran binding.h; this can be found in the compiler’s library
directory (on Linux this is usually /usr/local/lib/NAG Fortran, but that can be changed at installation time).

This topic is highly complex, and beyond the scope of this document. The reader should direct their attention
to the Fortran 2018 standard, or to a good textbook.

• [7.1] A TYPE(*) (“assumed type”) dummy argument is permitted in a BIND(C) procedure. It interoperates with
a C argument declared as “void *”. There is no difference between scalar and assumed-size on the C side, but
on the Fortran side, if the dummy argument is scalar the actual argument must also be scalar, and if the dummy
argument is an array, the actual argument must also be an array.

Because an actual argument can be passed directly to a TYPE(*) dummy, the C LOC function is not required,
and so there is no need for the TARGET attribute on the actual argument.

For example,

Program type_star_example

Interface

Function checksum(scalar,size) Bind(C)

Use Iso_C_Binding

Type(*) scalar

15

Integer(C_int),Value :: size

Integer(C_int) checksum

End Function

End Interface

Type myvec3

Double Precision v(3)

End Type

Type(myvec3) x

Call Random_Number(x%v)

Print *,checksum(x,Storage_Size(x)/8)

End Program

int checksum(void *a,int n)

{

int i;

int res = 0;

unsigned char *p = a;

for (i=0; i<n; i++) res = 0x3fffffff&((res<<1) + p[i]);

return res;

}

• A BIND(C) procedure can have optional arguments. Such arguments cannot also have the VALUE attribute.

An absent optional argument of a BIND(C) procedure is indicated by passing a null pointer argument.

For example,

Program optional_example

Use Iso_C_Binding

Interface

Function f(a,b) Bind(C)

Import

Integer(C_int),Intent(In) :: a

Integer(C_int),Intent(In),Optional :: b

Integer(C_int) f

End Function

End Interface

Integer(C_int) x,y

x = f(3,14)

y = f(23)

Print *,x,y

End Program

int f(int *arg1,int *arg2)

{

int res = *arg1;

if (arg2) res += *arg2;

return res;

}

The second reference to f is missing the optional argument b, so a null pointer will be passed for it. This will
result in the output:

17 23

10 Updated IEEE arithmetic capabilities

These features were available in Release 7.0:

• The module IEEE ARITHMETIC has new functions IEEE NEXT DOWN and IEEE NEXT UP. These are elemental with
a single argument, which must be a REAL of an IEEE kind (that is, IEEE SUPPORT DATATYPE must return .TRUE.

16

for that kind of REAL). They return the next IEEE value, that does not compare equal to the argument, in the
downwards and upwards directions respectively, except that the next down from −∞ is −∞ itself, and the next
up from +∞ is +∞ itself. These functions are superior to the old IEEE NEXT AFTER function in that they do
not signal any exception unless the argument is a signalling NaN (in which case IEEE INVALID is signalled).

For example, IEEE NEXT UP(-0.0) and IEEE NEXT UP(+0.0) both return the smallest positive subnormal value
(provided subnormal values are supported), without signalling IEEE UNDERFLOW (which IEEE NEXT AFTER does).

Similarly, IEEE NEXT UP(HUGE(0.0)) returns +∞ without signalling overflow.

• The module IEEE ARITHMETIC has new named constants IEEE NEGATIVE SUBNORMAL,
IEEE POSITIVE SUBNORMAL, and the new function IEEE SUPPORT SUBNORMAL. These are from Fortran 2018, and
reflect the change of terminology in the IEEE arithmetic standard in 2008. They are equivalent to the old
functions IEEE NEGATIVE DENORMAL, IEEE POSITIVE DENORMAL and IEEE SUPPORT DENORMAL.

• The requirement that the FLAG VALUE argument to IEEE GET FLAG and IEEE SET FLAG, the HALTING argument
to IEEE GET HALTING MODE and IEEE SET HALTING MODE, and the GRADUAL argument to
IEEE GET UNDERFLOW MODE and IEEE SET UNDERFLOW MODE, be default LOGICAL has been dropped; any kind of
LOGICAL is now permitted.

For example,

USE F90_KIND

USE IEEE_ARITHMETIC

LOGICAL(byte) flags(SIZE(IEEE_ALL))

CALL IEEE_GET_FLAG(IEEE_ALL,flags)

will retrieve the current IEEE flags into an array of one-byte LOGICALs.

These items are available in Release 7.2:

• The named constant IEEE AWAY is of type IEEE ROUND TYPE, and represents a rounding mode that rounds to
nearest, with ties away from zero. The IEEE standard only requires this rounding mode for decimal, and binary
hardware does not support this, so it cannot be used.

• The elemental function IEEE FMA performs a fused multiply-add operation. It has the syntax:

IEEE_FMA (A, B, C)

A : type Real (any IEEE kind);
B : same type and kind as A;
C : same type and kind as A.

Result : Same type and kind as A.

The result of the function is the value of (A×B)+C with only one rounding; that is, the whole operation is
computed mathematically and only rounded to the format of A at the end. For example, IEEE OVERFLOW is not
signalled if A×B overflows, but only if the final result is out of range.

Restriction: this function must not be invoked when the kind of A is not an IEEE format, i.e. if
IEEE SUPPORT DATATYPE (A) returns false.

• The pure subroutine IEEE GET MODES retrieves the halting modes, rounding modes, and underflow mode in a
single object. Its syntax is:

IEEE_GET_MODES (MODES)

MODES : scalar of type IEEE MODES TYPE, Intent(Out).

The retrieved modes can be used by IEEE SET MODES to restore the modes.

• The pure subroutine IEEE GET ROUNDING MODE, which retrieves the current rounding mode, now has an optional
argument to specify the radix. The syntax is thus now:

17

IEEE_GET_ROUNDING_MODE (ROUND_VALUE [, RADIX])

ROUND VALUE : type IEEE ROUND TYPE, Intent(Out);
RADIX (optional) : Integer, Intent(In), must be equal to two or ten.

The ROUND VALUE argument is assigned the current rounding mode for the specified radix. If RADIX does not
appear, the binary rounding mode is assigned.

• The elemental function IEEE INT converts an IEEE Real value to Integer with a specific rounding mode. It has
the syntax:

IEEE_INT (A, ROUND [, KIND])

A : type Real;
ROUND : type IEEE ROUND TYPE;
KIND (optional) : scalar Integer constant expression;
Result : type Integer, with kind KIND if KIND appears, otherwise default kind.

The value of A is rounded to an integer using the rounding mode specified by ROUND. If that value is representable
in the result kind, the result has that value; otherwise, the result is processor-dependent and IEEE INVALID is
signalled.

This operation is either the convertToInteger{round} or the convertToIntegerExact{round} operation spec-
ified by the IEEE standard. If it is the latter, and IEEE INVALID was not signalled, but A was not already an
integer, IEEE INEXACT is signalled.

Restriction: this function must not be invoked when the kind of A is not an IEEE format, i.e. if
IEEE SUPPORT DATATYPE (A) returns false.

• The elemental functions IEEE MAX NUM, IEEE MAX NUM MAG, IEEE MIN NUM, IEEE MIN NUM MAG perform maxi-
mum/minimum operations ignoring NaN values. If an argument is a signalling NaN, IEEE INVALID is raised, if
only one argument is a NaN, the result is the other argument; only if both arguments are NaNs is the result a
NaN. The syntax for IEEE MAX NUM is:

IEEE_MAX_NUM (X, Y)

X : type Real;
Y : same type and kind as X;
Result : same type and kind as X.

The value of the result is the maximum value of X and Y, ignoring NaN.

Restriction: this function must not be invoked when the kind of X is not an IEEE format, i.e. if
IEEE SUPPORT DATATYPE (X) returns false.

The IEEE MAX NUM MAG has the same syntax (apart from the name), and the result is whichever of X and Y has
the greater magnitude. The same restriction applies.

The IEEE MIN NUM has the same syntax (apart from the name), and the result is the minimum value of X and Y,
ignoring NaN. The same restriction applies.

The IEEE MIN NUM MAG has the same syntax (apart from the name), and the result is whichever of X and Y has
the smaller magnitude. The same restriction applies.

• The derived type IEEE MODES TYPE contains the all the floating-point modes: the halting modes, the rounding
modes, and the underflow mode. It is used by the IEEE GET MODES and IEEE SET MODES subroutines.

• The elemental functions IEEE QUIET {EQ|NE|LT|LE|GT|GE} compare two IEEE format numbers, without raising
any signal if an operand is a quiet NaN. If an operand is a signalling NaN, the IEEE INVALID exception is raised.
IEEE QUIET EQ and IEEE QUIET NE are exactly the same as == and /=, apart from only being usable on IEEE
format numbers. The IEEE QUIET EQ function has the syntax:

IEEE_QUIET_EQ (A, B)

18

A : type Real (any IEEE kind);
B : same type and kind as A;

Result : Logical of default kind.

The syntax of IEEE QUIET NE et al is the same, except for the name of the function.

Restriction: these functions must not be invoked when the kind of X is not an IEEE format, i.e. if
IEEE SUPPORT DATATYPE (X) returns false.

• The elemental function IEEE REAL converts an Integer or IEEE format Real value to the specified IEEE format
Real value. Its syntax is:

IEEE_REAL (A, [, KIND])

A : type Real or Integer;
KIND (optional) : scalar Integer constant expression;
Result : type Real, with kind KIND if KIND appears, otherwise default kind.

If the value of A is representable in the kind of the result, that value is the result. Otherwise, the value of A is
rounded to the kind of the result using the current rounding mode.

Restriction: this function must not be invoked when the kind of A or the result is not an IEEE format, i.e. if
IEEE SUPPORT DATATYPE (A) or if IEEE SUPPORT DATATYPE(REAL(0,KIND)) returns false.

• The elemental function IEEE RINT, which rounds an IEEE number to an integer without changing its format,
now has an optional argument ROUND which specifies the rounding required. The revised syntax is:

IEEE_RINT (X [, ROUND])

X : type Real (any IEEE kind);
ROUND (optional) : type IEEE ROUND TYPE.

Result : Same type and kind as X.

When ROUND is present, the result is the value of X rounded to an integer according to the mode specified by
ROUND; this is the operation the IEEE standard calls roundToIntegral{rounding}. When ROUND is absent, the
result is the value of X rounded to an integer according to the current rounding mode; this is the operation the
IEEE standard calls roundToIntegralExact.

Restriction: this function must not be invoked when the kind of X is not an IEEE format, i.e. if
IEEE SUPPORT DATATYPE (X) returns false.

• The pure subroutine IEEE SET MODES sets the halting modes, rounding modes, and underflow mode to the state
when a previous call to IEEE GET MODES was made. Its syntax is:

IEEE_SET_MODES (MODES)

MODES : scalar of type IEEE MODES TYPE, Intent(In).

The value of MODES must be one that was obtained via IEEE GET MODES.

• The pure subroutine IEEE SET ROUNDING MODE, which sets the rounding mode, now has an optional argument
to specify the radix. The syntax is thus now:

IEEE_SET_ROUNDING_MODE (ROUND_VALUE [, RADIX])

ROUND VALUE : type IEEE ROUND TYPE, Intent(In);
RADIX (optional) : Integer, Intent(In), must be equal to two or ten.

The rounding mode for the specified radix is set to ROUND VALUE. If RADIX does not appear, the binary rounding
mode is set.

19

Restriction: This subroutine must not be invoked unless there is some X (with radix RADIX if it is present) for
which both IEEE SUPPORT DATATYPE(X) and IEEE SUPPORT ROUNDING(ROUND VALUE,X) are true.

• The elemental functions IEEE SIGNALING {EQ|NE|LT|LE|GT|GE} compare two IEEE format numbers, rais-
ing the IEEE INVALID exception if an operand is a NaN (whether quiet or signalling). IEEE SIGNALING LT,
IEEE SIGNALING LE, IEEE SIGNALING GT and IEEE SIGNALING GE are exactly the same as <, <=, > and >=, apart
from only being usable on IEEE format numbers. The IEEE SIGNALING EQ function has the syntax:

IEEE_SIGNALING_EQ (A, B)

A : type Real (any IEEE kind);
B : same type and kind as A;

Result : Logical of default kind.

The syntax of IEEE SIGNALING NE et al is the same, except for the name of the function.

Restriction: these functions must not be invoked when the kind of X is not an IEEE format, i.e. if
IEEE SUPPORT DATATYPE (X) returns false.

• The elemental function IEEE SIGNBIT queries the sign bit of an IEEE format number. It has the syntax:

IEEE SIGNBIT (X)

X : type Real (any kind);

Result : Logical of default kind.

The result is true if and only if the sign bit is set (indicating negative for any value that is not a NaN).

Restriction: this function must not be invoked when the kind of X is not an IEEE format, i.e. if
IEEE SUPPORT DATATYPE (X) returns false.

11 Advanced coarray programming

• [7.0] Additional intrinsic atomic subroutines provide a means for multiple images to update atomic variables
without synchronisation. These are:

ATOMIC ADD (ATOM,VALUE,STAT)

ATOMIC AND (ATOM,VALUE,STAT)

ATOMIC CAS (ATOM,OLD,COMPARE,NEW,STAT)

ATOMIC FETCH ADD (ATOM,VALUE,OLD,STAT)

ATOMIC FETCH AND (ATOM,VALUE,OLD,STAT)

ATOMIC FETCH OR (ATOM,VALUE,OLD,STAT)

ATOMIC FETCH XOR (ATOM,VALUE,OLD,STAT)

ATOMIC OR (ATOM,VALUE,STAT)

ATOMIC XOR (ATOM,VALUE,STAT)

The arguments ATOM, COMPARE, NEW and OLD are all INTEGER(ATOMIC INT KIND). The ATOM argument is the one
that is updated, and must be a coarray or a coindexed variable. The OLD argument is INTENT(OUT), and receives
the value of ATOM before the operation. The STAT argument is optional, and must be a non-coindexed variable
of type INTEGER and at least 16 bits in size.

The VALUE argument must be INTEGER but can be of any kind; however, both VALUE and the result of the
operation must be representable in INTEGER(ATOMIC INT KIND).

The * ADD operation is addition, the * AND operation is bitwise and (like IAND), the * OR operation is bitwise or
(like IOR) and the * XOR operation is bitwise exclusive or (like IEOR).

ATOMIC CAS is an atomic compare-and-swap operation. If ATOM is equal to COMPARE, it is assigned the value NEW;
otherwise, it remains unchanged. In either case, the value before the operation is assigned to OLD. Note that
both COMPARE and NEW must also be INTEGER(ATOMIC INT KIND).

If the ATOM is a coindexed variable, and is located on a failed image, the operation fails and an error condition is
raised; the OLD argument becomes undefined, and if STAT is present, it is assigned the value STAT FAILED IMAGE;
if STAT is not present, the program is terminated. If no error occurs and STAT is present, it is assigned the value
zero.

20

• [7.0] The intrinsic function COSHAPE returns a vector of the co-extents of a coarray; its syntax is as follows.

COSHAPE(COARRAY [, KIND])

COARRAY : coarray of any type; if it is ALLOCATABLE, it must be allocated; if it is a structure component,
the rightmost component must be a coarray component;

KIND (optional) : scalar Integer constant expression that is a valid Integer kind number;

Result : vector of type Integer, or Integer(KIND)} if KIND is present; the size of the result is equal to
the co-rank of COARRAY.

For example, if a coarray is declared

REAL x[5,*]

and there are eight images in the current team, COSHAPE(x) will be equal to [5,2].

• [7.0] The intrinsic elemental function IMAGE STATUS enquires whether another image has stopped or failed; its
syntax is as follows.

IMAGE STATUS(IMAGE [, TEAM])

IMAGE : positive integer that is a valid image number;

TEAM (optional) : scalar TEAM TYPE value that identifies the current or an ancestor team;

Result : default Integer.

The value of the result is STAT FAILED IMAGE if the image has failed, STAT STOPPED IMAGE if the image has
stopped, and zero otherwise. The optional TEAM argument specifies which team the image number applies to; if
it is not specified, the current team is used.

• [7.0] The intrinsic function STOPPED IMAGES returns an array listing the images that have initiated normal
termination (i.e. “stopped”); its syntax is as follows.

STOPPED IMAGES([TEAM, KIND])

TEAM (optional) : scalar TEAM TYPE value that identifies the current or an ancestor team;

KIND (optional) : scalar INTEGER constant expression that is a valid Integer kind number;

Result : vector of type Integer, or Integer(KIND) if KIND is present.

The elements of the result are the stopped image numbers in ascending order.

• [7.0] The type EVENT TYPE in the intrinsic module ISO FORTRAN ENV, along with new statements and the intrinsic
function EVENT QUERY, provides support for events, a lightweight one-sided synchronisation mechanism.

Like type LOCK TYPE, entities of type EVENT TYPE are required to be variables or components, variables of type
EVENT TYPE are required to be coarrays, and variables with noncoarray subcomponents of type LOCK TYPE are
required to be coarrays. Such variables are called event variables. An event variable is not permitted to appear
in a variable definition context (i.e. any context where it might be modified), except in an EVENT POST or EVENT
WAIT statement, or as an actual argument where the dummy argument is INTENT(INOUT).

An event variable on an image may have an event “posted” to it by means of the image control statement EVENT
POST, which has the form

EVENT POST (event-variable [, sync-stat]...)

where the optional sync-stats may be a single STAT=stat-variable specifier and/or a single ERRSMG=errmsg-variable
specifier; stat-variable must be a scalar integer variable that can hold values up to 9999, and errmsg-variable
must be a scalar default character variable. Posting an event increments the variable’s “outstanding event count”
(this count is initially zero). The event-variable in this statement will usually be a coindexed variable, as it is
rarely useful for an image to post an event to itself.

If STAT= appears and the post is successful, zero is assigned to the stat-variable. If the image on which the
event-variable is located has stopped, STAT STOPPED IMAGE is assigned to the stat-variable; if the image has

21

failed, STAT FAILED IMAGE is assigned, and if any other error occurs, some other positive value is assigned. If
ERRMSG= appears and any error occurs, an explanatory message is assigned to the errmsg-variable. Note that if
STAT= does not appear and an error occurs, the program will be error-terminated, so having ERRMSG= without
STAT= is useless.

Events are received by the image control statement EVENT WAIT, which has the form

EVENT WAIT (event-variable [, event-wait-spec-list])

where the optional event-wait-spec-list is a comma-separated list that may contain a single STAT=stat-variable
specifier, a single ERRSMG=errmsg-variable specifier, and/or a single UNTIL COUNT=scalar-integer-expr specifier.
Waiting on an event waits until its “outstanding event count” is greater than or equal to the UNTIL COUNT=

specifier value, or greater than zero if UNTIL COUNT= does not appear. If the value specified in UNTIL COUNT= is
less than one, it is treated as if it were equal to one.

The event-variable in this statement is not permitted to be coindexed; that is, an image can only wait for
events posted to its own event variables. There is a partial synchronisation between the waiting image and
the images that contributed to the “outstanding event count”; the segment following execution of the EVENT

WAIT statement follows the segments before the EVENT POST statement executions. The synchronisation does
not operate in reverse, that is, there is no implication that execution of any segment in a posting image follows
any segment in the waiting image.

The STAT= and ERRMSG= operate similarly to the EVENT POST statement, except of course that STAT FAILED IMAGE

and STAT STOPPED IMAGE are impossible.

Finally, the intrinsic function EVENT QUERY can be used to interrogate an event variable without waiting for it.
It has the form

EVENT_QUERY (EVENT, COUNT [, STAT])

where EVENT is an event variable, COUNT is an integer variable at least as big as default integer, and the optional
STAT is an integer variable that can hold values up to 9999. EVENT is not permitted to be a coindexed variable;
that is, only the image where the event variable is located is permitted to query its count. COUNT is assigned
the current “outstanding event count” of the event variable. If STAT is present, it is assigned the value zero on
successful execution, and a positive value if any error occurs. If any error occurs and STAT is not present, the
program is error-terminated.

Note that event posts in unordered segments might not be included in the value assigned to count; that is, it
might take some (communication) time for an event post to reach the variable, and it is only guaranteed to have
reached the variable if the images have already synchronised. Use of EVENT QUERY does not by itself imply any
synchronisation.

• [7.0] The type TEAM TYPE in the intrinsic module ISO FORTRAN ENV, along with new statements and intrinsic
procedures, provides support for teams, a new method of structuring coarray parallel computation. The basic
idea is that while executing inside a team, the coarray environment acts as if only the images in the team exist.
This facilitates splitting coarray computations into independent parts, without the hassle of passing around
arrays listing the images that are involved in a particular part of the computation.

Unlike EVENT TYPE and LOCK TYPE, functions that return TEAM TYPE are permitted. Furthermore, a variable of
type TEAM TYPE is forbidden from being a coarray, and assigning a TEAM TYPE value from another image (e.g. as
a component of a derived type assignment) makes the variable undefined; this is because the TEAM TYPE value
might contain information specific to a particular image, e.g. routing information to the other images. Variables
of type TEAM TYPE are called team variables.

Creating teams
The set of all the images in the program is called the initial team. At any time, a particular image will be
executing in a particular team, the current team. A set of subteams of the current team can be created
at any time by using the FORM TEAM statement, which has the form

FORM TEAM (team-number , team-variable [, form-team-spec]...)

where team-number is a scalar integer expression that evaluates to a positive value, team-variable is a team
variable, and each form-team-spec is STAT=, ERRMSG=, and NEW INDEX=index-value specifier. At most one of
each kind of form-team-spec may appear in a FORM TEAM statement. All active images of the current team
must execute the same FORM TEAM statement. If NEW INDEX= appears, index-value must be a positive scalar
integer (see below). The STAT= and ERRMSG= specifiers have their usual form and semantics.

22

The number of subteams that execution of FORM TEAM produces is equal to the number of unique team-
number values in that execution; each unique team-number value identifies a subteam in the set, and each
image belongs to the subteam whose team number it specified. If NEW INDEX= appears, it specifies the image
number that the image will have in its new subteam, and therefore must be in the range 1 to N, where
N is the number of images in that subteam, and must be unique. If NEW INDEX= does not appear, it is
processor-dependent what the image number in the new subteam will be.

For example,

TYPE(TEAM_TYPE) oddeven

myteamnumber = 111*(MOD(THIS_IMAGE(),2) + 1)

FORM TEAM (myteamnumber, oddeven)

will create a set of two subteams, one with team number 111, the other with team number 222. Team 111
will contain the images with even image numbers in the current team, and team 222 will contain the images
with odd image numbers in the current team. On each image, the variable oddeven identifies the subteam
to which that image belongs.

Note that the team numbers are completely arbitrary (being chosen by the program), and only have meaning
within that set of subteams, which are called “sibling” teams.

Changing to a subteam
The current team is changed by executing a CHANGE TEAM construct, which has the basic form:

CHANGE TEAM (team-value [, sync-stat-list])

statements

END TEAM [([sync-stat-list])]

where team-value is a value of type TEAM TYPE, and the optional sync-stat-list is a comma-separated list
containing at most one STAT= and ERRMSG= specifier; the STAT= and ERRMSG= specifiers have their usual form
and semantics. Execution of the statements within the construct are with the current team set to the team
identified by team-value; this must be a subteam of the current team outside the construct. The setting of
the current team remains in effect during procedure calls, so any procedure referenced by the construct will
also be executed with the new team current.

Transfer of control out of the construct, e.g. by a RETURN or GOTO statement is prohibited. The construct
may be exited by executing its END TEAM statement, or by executing an EXIT statement that belongs to the
construct; the latter is only possible if the construct is given a name (this is not shown in the form above,
but consists of “construct-name:” prefix to the CHANGE TEAM statement, and and a “construct-name” suffix
to the END TEAM statement).

While executing a CHANGE TEAM construct, image selectors operate using the new team’s image indices,
the intrinsic functions NUM IMAGES and THIS IMAGES return the data for the new team, and SYNC ALL

synchronises the new team only.

There is an implicit synchronisation of all images of the new team both on the CHANGE TEAM statement, and
on the END TEAM statement, and all active images must execute the same statement at this time.

Synchronising parent or ancestor teams
While executing within a CHANGE TEAM construct, the effects of SYNC ALL and SYNC IMAGES only apply to
images within the current team. For SYNC ALL to synchronise the parent team, it would be necessary to first
exit the construct. This may be inconvenient when the computation following the synchronisation would be
within the team.

For this purpose, the SYNC TEAM statement has been added, with the form

SYNC TEAM (team-value [, sync-stat-list])

where team-value identifies the current team or an ancestor thereof, and sync-stat-list is the usual comma-
separated list containing at most one STAT= specifier and at most one ERRMSG= specifier (these have their
usual semantics and so are not further described here).

The effect is to synchronise all images in the specified team.

Team-related intrinsic functions
– The intrinsic function GET TEAM returns a value of type TEAM TYPE that identifies a particular team.

(This is the only way to get a TEAM TYPE value for the initial team.) The function has the form

GET_TEAM([LEVEL])

where the optional LEVEL argument is a scalar integer value that is equal to one of the named constants
CURRENT TEAM, INITIAL TEAM or PARENT TEAM, in the intrinsic module ISO FORTRAN ENV. This argument

23

specifies which team the returned TEAM TYPE value should identify; if it is absent, the value for the current
team is returned. If the current team is the initial team, the LEVEL argument must not be equal to
PARENT TEAM, as the initial team has no parent.

– The intrinsic function TEAM NUMBER returns a team number value (that was used in FORM TEAM by the
executing image). It has the form

TEAM_NUMBER([TEAM])

where the optional TEAM argument specifies which team to return the information for; it must identify
the current team or an ancestor team, not a subteam or unrelated team. If TEAM is absent, the team
number for the current team is returned. The initial team is considered to have a team number of −1
(except for the initial team, all team numbers are positive values).

Information about sibling and ancestor teams
The intrinsic functions IMAGE INDEX, NUM IMAGES, and THIS IMAGE normally return information relevant to
the current team, but they can return information for an ancestor team by using a TEAM argument, which
takes a scalar TEAM TYPE value that identifies the current team or an ancestor. Similarly, the IMAGE INDEX

and NUM IMAGES intrinsics can return information for a sibling team by using the TEAM NUMBER argument,
which takes a scalar Integer value that is equal to the team number of the current or a sibling team.
The TEAM NUMBER argument may also be equal to −1, in which case it specifies the initial team. (Note that
because the executing image is never a member of a sibling team, THIS IMAGE does not accept a TEAM NUMBER

argument.) The intrinsic function NUM IMAGES thus has two additional forms as follows:

NUM_IMAGES(TEAM)

NUM_IMAGES(TEAM_NUMBER)

For THIS IMAGE, the revised forms it may take are as follows:

THIS_IMAGE([TEAM])

THIS_IMAGE(COARRAY [, TEAM])

THIS_IMAGE(COARRAY, DIM [, TEAM])

The meanings of the COARRAY and DIM arguments are unchanged. The optional TEAM argument specifies the
team for which to return the information.

[7.2] For IMAGE INDEX, the additional forms it may take are as follows:

IMAGE_INDEX(COARRAY, SUB, TEAM)

IMAGE_INDEX(COARRAY, SUB, TEAM_NUMBER)

The meanings of the COARRAY and SUB arguments are unchanged, except that the subscripts are interpreted
as being for the specified team. The return value is likewise the image index in the specified team.

Establishing coarrays
A coarray is not allowed to be used within a team unless it is established in that team or an ancestor
thereof. The basic rules for establishment are as follows:

1. a nonallocatable coarray with the SAVE attribute (explicit or implicit) is always established;

2. an unallocated coarray (with the ALLOCATABLE attribute) is not established;

3. an allocated coarray is established in the team where it was allocated;

4. a dummy coarray is established in the team that executed the procedure call (this may be different from
the team where the actual argument is established).

Allocating and deallocating coarrays in teams
If a coarray with the ALLOCATABLE attribute is already allocated when a CHANGE TEAM statement is executed,
it is not allowed to DEALLOCATE it within that construct (or within a procedure called from that construct).

If a coarray with the ALLOCATABLE attribute is unallocated when a CHANGE TEAM statement is executed, it may
be allocated (using ALLOCATE) within that construct (or within a procedure called from that construct), and
may be subsequently deallocated as well. If such a coarray remains allocated when the END TEAM statement
is executed, it is automatically deallocated at that time.

This means that when using teams, allocatable coarrays may be allocated on some images (within the team),
but unallocated on other images (outside the team), or allocated with a different shape or type parameters on
other images (also outside the team). However, when executing in a team, the coarray is either unallocated
on all images of the team, or allocated with the same type parameters and shape on all images of the team.

Accessing coarrays in sibling teams
Access to a coarray outside the current team, but in a sibling team, is possible using the TEAM NUMBER=

specifier in an image selector. This uses the extended syntax for image selectors:

24

[cosubscript-list [, image-selector-spec-list]]

where cosubscript-list is the usual list of cosubscripts, and image-selector-spec-list contains a TEAM NUMBER=team-
number specifier, where team-number is the positive integer value that identifies a sibling team. The image-
selector-spec-list may also contain a STAT= specifier (this is described later, under Fault tolerance).

When the TEAM NUMBER= specifier is used the cosubscripts are treated as cosubscripts in the sibling team.
Note that access in this way is quite risky, and will typically require synchronisation, possibly of the whole
parent team. The coarray in question must be established in the parent team.

Accessing coarrays in ancestor teams
Access to a coarray in the parent or more distant ancestor team is possible using the TEAM= specifier in an
image selector. This uses the extended syntax for image selectors:

[cosubscript-list [, image-selector-spec-list]]

where cosubscript-list is the usual list of cosubscripts, and image-selector-spec-list contains a TEAM=team-
value specifier, where team-value is a value of type TEAM TYPE that identifies the current team or an ancestor.
The image-selector-spec-list may also contain a STAT= specifier (this is described later, under Fault tolerance).

When the TEAM= specifier is used the cosubscripts are treated as cosubscripts in the specified ancestor team,
and the image thus specified may lie within or outside the current team. If the access is to an image that
is outside the current team, care should be taken that the images are appropriately synchronised; such
synchronisation cannot be obtained by SYNC ALL or SYNC IMAGES, as they operate within a team, but may
be obtained by SYNC TEAM specifying an ancestor team, or by using locks or events. The coarray in question
must be established in the specified (current or ancestor) team.

Coarray association in CHANGE TEAM

It is possible to associate a local coarray-name in a CHANGE TEAM construct with a named coarray outside
the construct, changing the codimension and/or coextents in the process. This acts like a limited kind of
argument association; the local coarray-name has the type, parameters, rank and array shape of the outside
coarray, but does not have the ALLOCATABLE attribute. The syntax of the CHANGE TEAM construct with one
or more such associations is as follows:

CHANGE TEAM (team-value , coarray-association-list [, sync-stat-list])

where coarray-association-list is a comma-separated list of

local-coarray-name [explicit-coshape-spec] => outer-coarray-name

and explicit-coshape-spec is

[[lower-cobound :] upper-cobound ,]... [lower-cobound :] *

(The notation [something]... means something occurring zero or more times.)

The cobounds expressions are evaluated on execution of the CHANGE TEAM statement.

Use of this feature is not encouraged, as it is less powerful and more confusing than argument association.

• [7.0] Fault tolerance features for coarrays are supported. These consist of the FAIL IMAGE statement, the named
constant STAT FAILED IMAGE in the intrinsic module ISO FORTRAN ENV, the STAT= specifier in an image selector,
and the intrinsic function FAILED IMAGES.

The form of the FAIL IMAGE statement is simply

FAIL IMAGE

and execution of this statement will cause the current image to “fail”, that is, cease to participate in program
execution. This is the only way that an image can fail in NAG Fortran 7.0.

If all images have failed or stopped, program execution will terminate. NAG Fortran will display a warning
message if any images have failed.

An image selector has an optional list of specifiers, the revised syntax of an image selector being (where the
normal square brackets are literally square brackets, and the italic square brackets indicate optionality):

[cosubscript-list [, image-selector-spec-list]]

25

where cosubscript-list is a comma-separated list of cosubscripts, one scalar integer per codimension of the variable,
and image-selector-spec-list is a comma-separated containing at most one STAT=stat-variable specifier, and at
most one TEAM= or TEAM NUMBER= specifier (these were described earlier). If the coindexed object being accessed
lies on a failed image, the value STAT FAILED IMAGE is assigned to the stat-variable, and otherwise the value zero
is assigned.

The intrinsic function FAILED IMAGES returns an array of images that are known to have failed (it is possible
that an image might fail and no other image realise until it tries to synchronise with it). Its syntax is as follows.

FAILED IMAGES([TEAM, KIND])

TEAM (optional) : scalar TEAM TYPE value that identifies the current or an ancestor team;

KIND (optional) : scalar Integer constant expression that is a valid Integer kind number;

Result : vector of type Integer, or Integer(KIND) if KIND is present.

The elements of the result are the failed image numbers in ascending order.

In order to be able to handle failed images, the following semantics apply:

– writing a value to a variable on a failed image is permitted (but may have no effect);

– reading a value from a variable on a failed image is permitted, but the result is unpredictable;

– execution of a CHANGE TEAM, END TEAM, FORM TEAM, SYNC ALL, SYNC IMAGES or SYNC TEAM statement with
a STAT= specifier is permitted, and performs the team change, creation, or synchronisation operation on
the non-failed images, assigning the value STAT FAILED IMAGE to the STAT= variable.

The latter effect in particular allows the program to form a team of all the non-failed images, and keep executing
normally. However, since the data on the failed images is lost (reading the data produces garbage), the program
would need to be carefully designed to “checkpoint” its work periodically, so that it can roll the computation
state back to a known good value to recover.

The fault tolerance features are in principle intended to permit recovery from hardware failure, with the FAIL

IMAGE statement allowing some testing of recovery scenarios. The NAG Fortran Compiler does not support
recovery from hardware failure (at Release 7.1).

• [7.1] The intrinsic subroutines CO BROADCAST, CO MAX, CO MIN, CO REDUCE and CO SUM perform collective oper-
ations. These are for coarray parallelism: they compute values across all images in the current team, without
explicit synchronisation.

All of these subroutines have optional STAT and ERRMSG arguments. On successful execution, the STAT argument
is assigned the value zero and the ERRMSG argument is left unchanged. If an error occurs, a positive value is
assigned to STAT and an explanatory message is assigned to ERRMSG. Only the errors STAT FAILED IMAGE and
STAT STOPPED IMAGE are likely to be able to be caught in this way. Because there is not full synchronisation (see
below), different images may receive different errors, or none at all. If an error occurs and STAT is not present,
execution is terminated. Note that if the actual arguments for STAT or ERRMSG are optional dummy arguments,
they must be present on all images or absent on all images.

A reference (CALL) to one of these subroutines is not an image control statement, does not end the current
segment, and does not imply synchronisation (though some partial synchronisation will occur during the com-
putation). However, such calls are only permitted where an image control statement is permitted.

Each image in a team must execute the same sequence of CALL statements to collective subroutines as the other
images in the team. There must be no synchronisation between the images at the time of the call; the invocations
must come from unordered segments.

All collective subroutines have the first argument “A”, which is INTENT(INOUT), and must not be a coindexed
object. This argument contains the data for the calculation, and must have the same type, type parameters,
and shape on all images in the current team. If it is a coarray that is a dummy argument, it must have the same
ultimate argument on all images.

SUBROUTINE CO BROADCAST (A, SOURCE IMAGE [, STAT, ERRMSG])

A : variable of any type; it must not be a coindexed object, and must have the same type, type
parameters and shape on all images in the current team; if A is a coarray that is a dummy argument,
it must have the same ultimate argument on each image;

26

SOURCE IMAGE : integer scalar, in the range one to NUM IMAGES(), this argument must have the same
value on all images in the current team;

STAT (optional) : integer scalar variable, not coindexed;

ERRMSG (optional) : character scalar variable of default kind, not coindexed.

The value of argument A on image SOURCE IMAGE is assigned to the argument A on all the other images.

SUBROUTINE CO MAX (A [, RESULT IMAGE, STAT, ERRMSG])

A: variable of type Integer, Real, or Character; it must not be a coindexed object, and must have the
same type, type parameters and shape on all images in the current team; if A is a coarray that is a
dummy argument, it must have the same ultimate argument on each image;

RESULT IMAGE (optional) : integer scalar, in the range one to NUM IMAGES(), this argument must be
either present on all images or absent on all images; if present, it must have the same value on all
images in the current team;

STAT (optional) : integer scalar variable, not coindexed;

ERRMSG (optional) : character scalar variable of default kind, not coindexed.

This subroutine computes the maximum value of A across all images; if A is an array, the value is
computed elementally. If RESULT IMAGE is present, the result is assigned to argument A on that image,
otherwise it is assigned to argument A on all images.

SUBROUTINE CO MIN (A [, RESULT IMAGE, STAT, ERRMSG])

A: variable of type Integer, Real, or Character; it must not be a coindexed object, and must have the
same type, type parameters and shape on all images in the current team; if A is a coarray that is a
dummy argument, it must have the same ultimate argument on each image;

RESULT IMAGE (optional) : integer scalar, in the range one to NUM IMAGES(), this argument must be
either present on all images or absent on all images; if present, it must have the same value on all
images in the current team;

STAT (optional) : integer scalar variable, not coindexed;

ERRMSG (optional) : character scalar variable of default kind, not coindexed.

This subroutine computes the minimum value of A across all images; if A is an array, the value is
computed elementally. If RESULT IMAGE is present, the result is assigned to argument A on that image,
otherwise it is assigned to argument A on all images.

SUBROUTINE CO REDUCE (A, OPERATION [, RESULT IMAGE, STAT, ERRMSG])

A: non-polymorphic variable of any type; it must not be a coindexed object, and must have the same
type, type parameters and shape on all images in the current team; if A is a coarray that is a dummy
argument, it must have the same ultimate argument on each image;

OPERATION : pure function with exactly two arguments; the dummy arguments of OPERATION must
be non-allocatable, non-optional, non-pointer, non-polymorphic dummy variables, and each argument
and the result of the function must be scalar with the same type and type parameters as A;

RESULT IMAGE (optional) : integer scalar, in the range one to NUM IMAGES(), this argument must be
either present on all images or absent on all images; if present, it must have the same value on all
images in the current team;

STAT (optional) : integer scalar variable, not coindexed;

ERRMSG (optional) : character scalar variable of default kind, not coindexed.

27

This subroutine computes an arbitrary reduction of A across all images; if A is an array, the value is
computed elementally. The reduction is computed starting with the set of corresponding values of A
on all images; this is an iterative process, taking two values from the set and converting them to a
single value by applying the OPERATION function; the process continues until the set contains only a
single value — that value is the result. If RESULT IMAGE is present, the result is assigned to argument
A on that image, otherwise it is assigned to argument A on all images.

SUBROUTINE CO SUM (A [, RESULT IMAGE, STAT, ERRMSG])

A: variable of type Integer, Real, or Complex; it must not be a coindexed object, and must have the
same type, type parameters and shape on all images in the current team; if A is a coarray that is a
dummy argument, it must have the same ultimate argument on each image;

RESULT IMAGE (optional) : integer scalar, in the range one to NUM IMAGES(), this argument must be
either present on all images or absent on all images; if present, it must have the same value on all
images in the current team;

STAT (optional) : integer scalar variable, not coindexed;

ERRMSG (optional) : character scalar variable of default kind, not coindexed.

This subroutine computes the sum of A across all images; if A is an array, the value is computed
elementally. If RESULT IMAGE is present, the result is assigned to argument A on that image, otherwise
it is assigned to argument A on all images.

12 References

The Fortran 2018 standard, ISO/IEC 1539-1:2018(E), is available from ISO as well as from many national standards
bodies. A number of books describing the new standard are available; the recommended reference book is “Modern
Fortran Explained (Incorporating Fortran 2018)” by Metcalf, Reid & Cohen, Oxford University Press, 2018 (ISBN
978-0-19-881188-6).

28

