Routine |
Mark of Introduction |
Purpose |
|---|---|---|
| d01ahf | 8 | nagf_quad_dim1_fin_well One-dimensional quadrature, adaptive, finite interval, strategy due to Patterson, suitable for well-behaved integrands |
| d01anf | 8 | nagf_quad_dim1_fin_wtrig One-dimensional quadrature, adaptive, finite interval, weight function or |
| d01apf | 8 | nagf_quad_dim1_fin_wsing One-dimensional quadrature, adaptive, finite interval, weight function with end-point singularities of algebraico-logarithmic type |
| d01aqf | 8 | nagf_quad_dim1_fin_wcauchy One-dimensional quadrature, adaptive, finite interval, weight function , Cauchy principal value (Hilbert transform) |
| d01arf | 10 | nagf_quad_dim1_indef One-dimensional quadrature, non-adaptive, finite interval with provision for indefinite integrals |
| d01asf | 13 | nagf_quad_dim1_inf_wtrig One-dimensional quadrature, adaptive, semi-infinite interval, weight function or |
| d01bdf | 8 | nagf_quad_dim1_fin_smooth One-dimensional quadrature, non-adaptive, finite interval |
| d01daf | 5 | nagf_quad_dim2_fin Two-dimensional quadrature, finite region |
| d01eaf | 12 | nagf_quad_md_adapt_multi Multidimensional adaptive quadrature over hyper-rectangle, multiple integrands |
| d01esf | 25 | nagf_quad_md_sgq_multi_vec Multi-dimensional quadrature using sparse grids |
| d01fbf | 8 | nagf_quad_md_gauss Multidimensional Gaussian quadrature over hyper-rectangle |
| d01fcf | 8 | nagf_quad_md_adapt Multidimensional adaptive quadrature over hyper-rectangle |
| d01fdf | 10 | nagf_quad_md_sphere Multidimensional quadrature, Sag–Szekeres method, general product region or -sphere |
| d01gaf | 5 | nagf_quad_dim1_data One-dimensional quadrature, integration of function defined by data values, Gill–Miller method |
| d01gbf | 10 | nagf_quad_md_mcarlo Multidimensional quadrature over hyper-rectangle, Monte Carlo method |
| d01gcf | 10 | nagf_quad_md_numth Multidimensional quadrature, general product region, number-theoretic method |
| d01gdf | 14 | nagf_quad_md_numth_vec Multidimensional quadrature, general product region, number-theoretic method, variant of d01gcf efficient on vector machines |
| d01gyf | 10 | nagf_quad_md_numth_coeff_prime Korobov optimal coefficients for use in d01gcf or d01gdf, when number of points is prime |
| d01gzf | 10 | nagf_quad_md_numth_coeff_2prime Korobov optimal coefficients for use in d01gcf or d01gdf, when number of points is product of two primes |
| d01jaf | 10 | nagf_quad_md_sphere_bad Multidimensional quadrature over an -sphere, allowing for badly behaved integrands |
| d01paf | 10 | nagf_quad_md_simplex Multidimensional quadrature over an -simplex |
| d01raf | 24 | nagf_quad_dim1_gen_vec_multi_rcomm One-dimensional quadrature, adaptive, finite interval, multiple integrands, vectorized abscissae, reverse communication |
| d01rcf | 24 | nagf_quad_dim1_gen_vec_multi_dimreq Determine required array dimensions for d01raf |
| d01rgf | 24 | nagf_quad_dim1_fin_gonnet_vec One-dimensional quadrature, adaptive, finite interval, strategy due to Gonnet, allowing for badly behaved integrands |
| d01rjf | 27.1 | nagf_quad_dim1_fin_general One-dimensional quadrature, adaptive, finite interval, strategy due to Piessens and de Doncker, allowing for badly behaved integrands |
| d01rkf | 27.1 | nagf_quad_dim1_fin_osc_fn One-dimensional quadrature, adaptive, finite interval, method suitable for oscillating functions |
| d01rlf | 27.1 | nagf_quad_dim1_fin_brkpts One-dimensional quadrature, adaptive, finite interval, allowing for singularities at user-specified break-points |
| d01rmf | 27.1 | nagf_quad_dim1_inf_general One-dimensional quadrature, adaptive, infinite or semi-infinite interval, strategy due to Piessens and de Doncker |
| d01tbf | 24 | nagf_quad_dim1_gauss_wres Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule |
| d01tcf | 27.1 | nagf_quad_dim1_gauss_wgen Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule |
| d01tdf | 26 | nagf_quad_dim1_gauss_wrec Calculation of weights and abscissae for Gaussian quadrature rules, method of Golub and Welsch |
| d01tef | 26 | nagf_quad_dim1_gauss_recm Generates recursion coefficients needed by d01tdf to calculate a Gaussian quadrature rule |
| d01uaf | 24 | nagf_quad_dim1_gauss_vec One-dimensional Gaussian quadrature, choice of weight functions (vectorized) |
| d01ubf | 26 | nagf_quad_dim1_inf_exp_wt Non-automatic routine to evaluate |
| d01zkf | 24 | nagf_quad_opt_set Option setting routine |
| d01zlf | 24 | nagf_quad_opt_get Option getting routine |
| d01ajf | 8
(Deprecated) |
nagf_quad_dim1_fin_bad One-dimensional quadrature, adaptive, finite interval, strategy due to Piessens and de Doncker, allowing for badly behaved integrands (single abscissa interface) |
| d01akf | 8
(Deprecated) |
nagf_quad_dim1_fin_osc One-dimensional quadrature, adaptive, finite interval, method suitable for oscillating functions (single abscissa interface) |
| d01alf | 8
(Deprecated) |
nagf_quad_dim1_fin_sing One-dimensional quadrature, adaptive, finite interval, allowing for singularities at user-specified break-points (single abscissa interface) |
| d01amf | 8
(Deprecated) |
nagf_quad_dim1_inf One-dimensional quadrature, adaptive, infinite or semi-infinite interval |
| d01atf | 13
(Deprecated) |
nagf_quad_dim1_fin_bad_vec One-dimensional quadrature, adaptive, finite interval, variant of d01ajf efficient on vector machines |
| d01auf | 13
(Deprecated) |
nagf_quad_dim1_fin_osc_vec One-dimensional quadrature, adaptive, finite interval, variant of d01akf efficient on vector machines |
| d01bcf | 8
(Deprecated) |
nagf_quad_withdraw_dim1_gauss_wgen Old routine for calculating weights and abscissae for Gaussian quadrature rules, replaced by d01tcf |
| d01rbf | 24
(Deprecated) |
nagf_quad_withdraw_1d_gen_vec_multi_diagnostic Diagnostic routine for d01raf |