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Abstract

Calibration of stochastic local volatility (SLV) models to their underlying local volatility model
is often performed by numerically solving a two-dimensional non-linear forward Kolmogorov
equation. We propose a novel finite volume (FV) discretization in the numerical solution of
general 1D and 2D forward Kolmogorov equations. The FV method does not require a trans-
formation of the PDE. This constitutes a main advantage in the calibration of SLV models
as the pertinent PDE coefficients are often nonsmooth. Moreover, the FV discretization has
the crucial property that the total numerical mass is conserved. Applying the FV discretiza-
tion in the calibration of SLV models yields a non-linear system of ODEs. Numerical time
stepping is performed by the Hundsdorfer–Verwer ADI scheme to increase the computational
efficiency. The non-linearity in the system of ODEs is handled by introducing an inner it-
eration. Ample numerical experiments are presented that illustrate the effectiveness of the
calibration procedure.

Key words: Stochastic local volatility; Forward Kolmogorov equation; Finite volume discretization; ADI
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1 Introduction

In contemporary financial mathematics, stochastic local volatility (SLV) models constitute state-
of-the-art models to describe asset price processes, notably foreign exchange (FX) rates. Let Sτ
represent the exchange rate at time τ ≥ 0 and let the spot value S0 be given. For modelling the
exchange rate we consider the transformation Xτ = log(Sτ/S0) since the transformed variable Xτ

reflects better the duality between the exchange rate Sτ and 1/Sτ , where the latter one is the
exchange rate when the role of the domestic currency and the foreign currency are swapped. In
this article we consider SLV models of the type

dXτ = (rd − rf − 1
2σ

2
SLV (Xτ , τ)ψ2(Vτ ))dτ + σSLV (Xτ , τ)ψ(Vτ )dW

(1)
τ ,

dVτ = κ(η − Vτ )dτ + ξV ατ dW
(2)
τ ,

(1.1)

∗Corresponding author.
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with ψ a non-negative function on R+ such that ψ(0) = 0, α, κ, η, ξ strictly positive parameters,

dW
(1)
τ · dW (2)

τ = ρdτ , −1 ≤ ρ ≤ 1 and given spot values X0 = 0, V0. The non-negative function
σSLV (x, τ) is called the leverage function and the constant rd, respectively rf , denotes the risk-free
interest rate in the domestic currency, respectively in the foreign currency. It is readily seen that
the process Vτ is always non-negative. In [1] it is shown that the boundary Vτ = 0 is attainable
for 0 < α < 1/2 and for α = 1/2 if 2κη < ξ2. For α > 1/2 it holds that Vτ = 0 is an unattainable
boundary. Furthermore, Vτ =∞ is an unattainable boundary for all values of α > 0. The choice
ψ(v) =

√
v, α = 1/2 corresponds to the Heston-based SLV model and the choice ψ(v) = v, α = 1

corresponds to the SLV model described in [28].
SLV models constitute a natural combination of local volatility (LV) models and stochastic

volatility (SV) models, [21, 28]. The former type of models can be described by the stochastic
differential equation (SDE)

dXLV,τ = (rd − rf − 1
2σ

2
LV (XLV,τ , τ))dτ + σLV (XLV,τ , τ)dWτ . (1.2)

The function σLV (x, τ) is called the local volatility function and can be determined by the Dupire
formula [4] such that the LV model reproduces the known market prices for European call and
put options. Since the LV model is completely determined by the market prices of European call
and put options, it offers no flexibility in matching the market dynamics. The underlying pure
SV model corresponding with (1.1) is given by the system of SDEs

dXSV,τ = (rd − rf − 1
2ψ

2(VSV,τ ))dτ + ψ(VSV,τ )dW
(1)
τ ,

dVSV,τ = κ(η − VSV,τ )dτ + ξV αSV,τdW
(2)
τ ,

(1.3)

where the function ψ and the parameters need to satisfy the same restrictions as above. SV models
are typically well-suited to reflect forward volatilities, but they are often unable to capture the
volatility smile exactly, see e.g. [30]. By combining features of the LV model with features of the
SV models, SLV models are able to match the market dynamics and to reproduce the market
prices for European call and put options. If the leverage function is identically equal to one, then
the SLV model reduces to the SV model (1.3). If the parameter ξ equals zero, then the SLV model
reduces to a purely LV model.

In financial practice, see e.g. [2, 28], one will first determine the SV parameters κ, η, ξ, ρ such
that the underlying SV model matches the current market dynamics. Afterwards, the leverage
function σSLV (x, τ) is calibrated such that the SLV model and the underlying LV model define the
same fair value for non-path-dependent European options. Then, since LV models are calibrated
exactly to the known market prices for vanilla options, the SLV model also reproduces the known
market prices for European call and put options. Let p(x, v, τ ;X0, V0) denote the joint density of
(Xτ , Vτ ) under the SLV model (1.1) and let pLV (x, τ ;X0) denote the density of XLV,τ under (1.2).
It is well-known, see e.g. [9, 27], that both the SLV model (1.1) and the LV model (1.2) define the
same marginal distribution for Sτ , i.e.

pLV (x, τ ;X0) =

∫ ∞
0

p(x, v, τ ;X0, V0)dv, (1.4)

for τ > 0, if

σ2
LV (x, τ) = E[σ2

SLV (Xτ , τ)ψ2(Vτ )|Xτ = x] = σ2
SLV (x, τ)E[ψ2(Vτ )|Xτ = x]. (1.5)

If one can determine the conditional expectation above, and if the leverage function is defined by
(1.5), then both models yield the same fair value for non-path-dependent European options and
hence the SLV model is calibrated exactly to the market prices for vanilla options. This is, however,
highly non-trivial since the conditional expectation itself depends on the leverage function.

In the past years, a variety of numerical techniques, see e.g. [2, 5, 11, 24, 30], has been proposed
in order to approximate the conditional expectation from (1.5) and to approximate the appropriate
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leverage function. The authors in [11, 30] make use of Monte Carlo techniques, whereas in [2, 5, 24]
partial differential equation (PDE) methods are applied.

In this article, the PDE approach is considered. For the effective calibration, the conditional
expectation is then often rewritten as, cf. [2, 5, 24],

E[ψ2(Vτ )|Xτ = x] =

∫∞
0
ψ2(v)p(x, v, τ ;X0, V0)dv∫∞
0
p(x, v, τ ;X0, V0)dv

. (1.6)

It can be shown, see e.g. [25], that the joint density function satisfies the forward Kolmogorov
equation

∂
∂τ p = ∂2

∂x2

(
1
2σ

2
SLV ψ

2(v)p
)

+ ∂2

∂x∂v (ρξσSLV ψ(v)vαp) + ∂2

∂v2

(
1
2ξ

2v2αp
)

− ∂
∂x

(
(rd − rf − 1

2σ
2
SLV ψ

2(v))p
)
− ∂

∂v (κ(η − v)p) ,

(1.7)

for x ∈ R, v > 0, τ > 0 and with initial condition p(x, v, 0;X0, V0) = δ(x)δ(v − V0) where δ
denotes the Dirac delta function. Once the joint density p is known, one can easily determine the
leverage function by computing the integrals in (1.6) and the SLV model is calibrated exactly to
the LV model. By combining (1.5), (1.6) and (1.7) it is readily seen that one has to solve a highly
non-linear PDE in order to perform the calibration.

In financial mathematics, convection-diffusion equations of the type (1.7) are often discretized
by means of finite difference methods, see e.g. [2, 24]. If the parameter α is less or equal to 1/2,
however, it holds that Vτ = 0 is attainable and defining a proper boundary condition at v = 0
is a non-trivial task. Moreover, finite difference methods are often not mass-conservative whereas
conservation of mass is a key property of forward Kolmogorov equations. The finite volume method
proposed in [5] manages to deal with the issues above. The latter method, however, makes use of
a transformation of the original PDE (1.7) which incorporates derivatives of the leverage function.
As the leverage function is often nonsmooth and only known at a finite number of points, this
could lead to undesirable (erratic) behaviour.

In this paper we will introduce a finite volume - alternating direction implicit discretization
for the numerical solution of general, non-transformed forward Kolmogorov equations of the type
(1.7). The discretization makes use of the general method of lines (MOL), cf. [20]. The PDE
is first discretized in the spatial variables, yielding large systems of stiff ordinary differential
equations (ODEs). These so-called semidiscrete systems are subsequently solved by applying a
suitable implicit time stepping method. The spatial discretization is performed by finite volume
methods to keep the total numerical mass equal to one and to handle the boundary conditions in
a natural way. Since the PDE (1.7) is multidimensional, the temporal discretization is performed
by an alternating direction implicit (ADI) scheme, more precisely the Hundsdorfer–Verwer (HV)
scheme. This can yield a large computational advantage in comparison with standard (non-split)
implicit time stepping methods. Finally, for the calibration of the SLV model to the LV model, an
inner iteration is introduced in order to handle the non-linearity from inserting (1.6) into (1.7).

An outline of the rest of our paper is as follows.
In Section 2 a finite volume discretization is introduced for the spatial discretization of general

1D and 2D forward Kolmogorov equations. The performance of the finite volume discretization is
illustrated by ample numerical experiments.

The spatial discretization results in a large system of ODEs. In Section 3 an ADI temporal
discretization scheme is applied to increase the computational efficiency in the numerical solution
of this ODE system.

In Section 4 the finite volume discretization is used for the calibration of SLV models, yielding
a large non-linear system of ODEs. The ADI scheme is applied for the numerical solution of this
system of ODEs and an iteration procedure is described for handling the non-linearity.

In Section 5 numerical experiments are presented to illustrate the performance of the obtained
calibration procedure and the final Section 6 concludes.

3



2 Spatial discretization of forward Kolmogorov equations

In the general MOL approach the PDE is first discretized in the spatial variables by for example
finite difference (FD) or finite volume (FV) methods. In this section a spatial discretization is
proposed for a general two-dimensional forward Kolmogorov equation of the type

∂
∂τ p+ ∂

∂x (µ1p) + ∂
∂y (µ2p) = ∂2

∂x2

(
1
2σ

2
1p
)

+ ∂2

∂x∂y (ρσ1σ2p) + ∂2

∂y2

(
1
2σ

2
2p
)
, (2.1)

with x, y ∈ R, τ > 0, and where σ1, σ2, µ1, µ2 are real coefficient functions of x, y, τ . Moreover,
the functions σ1, σ2 are required to be non-negative and it is assumed that there exist values
X0, Y0 such that the initial function is given by p(x, y, 0) = δ(x−X0)δ(y − Y0). Due to the form
of the coefficients it is possible that the spatial domain is naturally restricted. For example, if
µ2(x, y, τ) = κ(η − y) and σ2(x, y, τ) = ξyα with κ, η, ξ, α strictly positive constants, then the
domain in the y-direction is naturally restricted to y ≥ 0, cf. PDE (1.7).

Since the solution of forward Kolmogorov equations represents the density of an underlying
stochastic process, conservation of mass is a fundamental property and the use of FV schemes
is appropriate. While FD methods are well known in finance, FV methods are less common in
financial applications and we briefly recall the basic idea.

2.1 Introduction to finite volume discretizations

Finite volume methods were originally developed to solve conservation laws, or more generally to
solve PDEs in conservative form. For example, consider the one-dimensional conservative PDE

∂
∂τ p+ ∂

∂x (a(p, x, τ)p) = ∂
∂x

(
b(p, x, τ) ∂

∂xp
)
, (2.2)

for x ∈ Ω, τ > 0, where Ω is an interval in R. Both sides of equation (2.2) can be integrated in x
over an interval (more generally, a cell) [xl, xu] in order to get

∂
∂τ

∫ xu

xl

pdx = f(p, xl, τ)− f(p, xu, τ), (2.3)

where f(p, x, τ) is a function given by

f(p, x, τ) = a(p, x, τ)p− b(p, x, τ) ∂
∂xp.

The function f is typically called the flux of p and f(p, x, τ)|x=xl , f(p, x, τ)|x=xu represent the
fluxes at the left and right boundaries of the cell [xl, xu]. Relationship (2.3) shows that the total
integral of p, which typically represents a mass, momentum or some similar quantity, changes
only as a result of the flux difference over the cell. If equation (2.2) is considered over a bounded
domain [xmin, xmax] and we assume that f(p, xmin, τ) = f(p, xmax, τ) for all τ , i.e. the flux at the
left boundary is exactly matched by the flux at the right boundary, then the space integral of p
over [xmin, xmax] is constant in time. This means that the total mass or momentum is conserved.
If the spatial domain Ω of the PDE is unbounded, and if the interval [xmin, xmax] is wide enough,
then one will often have that f(p, xmin, τ) ≈ f(p, xmax, τ) ≈ 0 for all τ > 0.

To construct a numerical FV scheme we start with a discretization of the spatial domain. If
the spatial domain is unbounded, it needs to be truncated to a wide, finite interval [xmin, xmax].
Then, consider the discretization

xmin = x1 < x2 < · · · < xm = xmax,

of the domain of interest and denote

∆xi = xi − xi−1, for 2 ≤ i ≤ m,

and ∆x1 = ∆xm+1 = 0. Define mid-points

xi−0.5 = xi − 1
2∆xi =

xi−1 + xi
2

for 2 ≤ i ≤ m,
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and let Ωi = [xi−0.5, xi+0.5] be cells for i = 1, 2, . . . ,m where we define x0.5 := x1 and xm+0.5 :=
xm. This yields a vertex centred grid with cell vertices xi−0.5. We can now consider the cell
average pi(τ) which is defined by

pi(τ) =
1

xi+0.5 − xi−0.5

∫
Ωi

p(x, τ)dx,

and which is typically the quantity that FV schemes approximate. If we assume that the grid is
smooth in the sense that ∆xi+1 −∆xi = O(∆x2) where ∆x denotes a maximal mesh width, then
the cell average pi(τ) is a second-order approximation to p(xi, τ). Differentiating pi(τ) in τ and
using (2.3) gives

p′i(τ) =
f(p, xi−0.5, τ)− f(p, xi+0.5, τ)

xi+0.5 − xi−0.5
(2.4)

which is just another way of stating the conservation property since if we sum over all cells and
pull out the derivative in time we find that

∂
∂τ

m∑
i=1

pi(τ)(xi+0.5 − xi−0.5) = 0,

provided f(p, xmin, τ) = f(p, xmax, τ).
Equation (2.4) is typically taken as the starting point for the numerical discretization. Denote

by
Pi(τ) ≈ pi(τ), for 1 ≤ i ≤ m,

the numerical approximations for the cell averages and let P be the vector that contains these
approximations. The numerical discretization is then defined by

P ′i (τ) =
fi−0.5(P, τ)− fi+0.5(P, τ)

xi+0.5 − xi−0.5
= [fi−0.5(P, τ)− fi+0.5(P, τ)]

2

∆xi + ∆xi+1
, (2.5)

where the fi±0.5 are numerical fluxes that approximate the exact fluxes f(p, xi±0.5, τ). By defining
a discretization of the type (2.5), it readily follows that the total numerical integral (mass)

m1∑
i=1

Pi(τ)(xi+0.5 − xi−0.5) (2.6)

stays constant in time provided that f0.5(P, τ) = fm+0.5(P, τ). It is clear that the exact fluxes
from (2.4) involve the unknown function p at the cell boundaries xi±0.5. Therefore, we define the
numerical fluxes by

fi±0.5(P, τ) = a(Pi±0.5, xi±0.5, τ)Pi±0.5 − b(Pi±0.5, xi±0.5, τ)Px,i±0.5, (2.7)

where the Pi±0.5(τ) form approximations to the exact values p(xi±0.5, τ) and the Px,i±0.5(τ) form
approximations to ∂

∂xp(x, τ)|x=xi±0.5
. Since the cell average is a second-order approximation to p,

the approximations Pi can be used to define Pi±0.5 and Px,i±0.5. The manner in which the latter
values are computed at the cell boundaries from the surrounding Pi plays a large part in defining
the characteristics of the numerical scheme. Lastly, inserting (2.7) into (2.5) yields a system of
(possibly non-linear) ODEs which is solved with a suitable time integration procedure.

Recall that conservation of mass is a fundamental property of forward Kolmogorov equations
and the use of FV schemes is appropriate. Forward Kolmogorov equations of the type (2.1) are,
however, not in conservative form and hence straightforward application of standard FV schemes
is not possible. Moreover, rewriting PDE (2.1) in conservative form would involve derivatives of
the coefficient functions, which are not known in general practical applications. In the remainder
of this section, a FV-based discretization of the spatial derivatives in the non-transformed PDE
(2.1) is introduced such that conservation of total mass is guaranteed. We start by explaining the
discretization for a general one-dimensional forward Kolmogorov equation, and then generalise it
to the two-dimensional case.
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2.2 One-dimensional forward Kolmogorov equations

Standard one-dimensional forward Kolmogorov equations are also not written in conservative
form and their solutions represent density functions of underlying stochastic processes. In this
subsection a FV-based discretization is introduced for the general one-dimensional equation

∂
∂τ p+ ∂

∂x (µp) = ∂2

∂x2

(
1
2σ

2p
)
, (2.8)

for x ∈ R, τ > 0, where σ, µ are real functions of x and τ , with σ non-negative and with initial
function given by p(x, 0) = δ(x − X0) for some real X0. Spatial discretization by FD or FV
methods is often applied on a finite grid. By consequence, the spatial domain has to be truncated
to [xmin, xmax], where the boundaries are chosen sufficiently far away from X0 such that the
truncation error is negligible. Recall that the form of σ, µ can naturally restrict the spatial domain
of the PDE to for example x ≥ 0. In the latter case, the lower boundary is naturally defined as
xmin = 0.

As before, define a spatial mesh xmin = x1 < x2 < . . . < xm = xmax, let ∆xi = xi − xi−1 be
the mesh widths, with ∆x1 = ∆xm+1 = 0, and define

xi−0.5 = xi − 1
2∆xi =

xi−1 + xi
2

for 2 ≤ i ≤ m,

with x0.5 = x1 and xm+0.5 = xm. This yields a vertex centred grid with cells Ωi = [xi−0.5, xi+0.5].
Let the Pi(τ) denote approximations to the exact cell averages

pi(τ) =
1

xi+0.5 − xi−0.5

∫
Ωi

p(x, τ)dx,

and let P be the vector containing these approximations. Analogously to the previous section (see
equations (2.4) and (2.5), as well as [20]) we define discretizations of the form

P ′i (τ) = [fi−0.5(P, τ)− fi+0.5(P, τ)]
2

∆xi + ∆xi+1
(2.9)

where the numerical fluxes are given by

fi±0.5(P, τ) = fa,i±0.5(P, τ) + fd,i±0.5(P, τ),

with
fa,i±0.5(P, τ) ≈ µ(xi±0.5, τ)p(xi±0.5, τ), (2.10)

and
fd,i±0.5(P, τ) ≈ − ∂

∂x

(
1
2σ

2(x, τ)p(x, τ)
)
|x=xi±0.5

. (2.11)

For the ease of presentation, from now on we omit the dependence of the parameters on τ and set
µi±0.5 = µ(xi±0.5, τ) and σi = σ(xi, τ). Note that f0,5(P, τ), respectively fm+0.5(P, τ), corresponds
with the flux at the boundary xmin = x1, respectively xmax = xm.

The advection part of the PDE (2.8) is written in conservative form. For the inner cell bound-
aries, i.e. for xi−0.5 with 2 ≤ i ≤ m, we consider the second-order central FV scheme, cf. [20], and
define fa,i−0.5(P, τ) in (2.10) as

fa,i−0.5(P, τ) = µi−0.5
Pi−1(τ) + Pi(τ)

2
.

The diffusion part is not written in conservative form and hence it is not possible to apply standard
FV schemes to this term directly. The idea of the second-order FV scheme for (2.11), see e.g. [20],
is generalised by defining

fd,i−0.5(P, τ) = −
(

1
2σ

2
i Pi(τ)− 1

2σ
2
i−1Pi−1(τ)

) 1

∆xi
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for 2 ≤ i ≤ m. It is readily seen that(
1
2σ

2
i p(xi, τ)− 1

2σ
2
i−1p(xi−1, τ)

) 1

∆xi

is a second-order approximation of ∂
∂x ( 1

2σ
2p) at the point xi−0.5 which explains the choice for this

discretization. Inserting these expressions back into (2.9) we get

P ′i (τ) =
σ2
i−1Pi−1(τ)

∆xi(∆xi + ∆xi+1)
− σ2

i Pi(τ)

∆xi∆xi+1
+

σ2
i+1Pi+1(τ)

∆xi+1(∆xi + ∆xi+1)
(2.12)

+

[
µi−0.5

Pi−1(τ) + Pi(τ)

2
− µi+0.5

Pi(τ) + Pi+1(τ)

2

]
2

∆xi + ∆xi+1
,

for 2 ≤ i ≤ m − 1. Note that by applying the second-order central FD scheme for diffusion

on non-uniform spatial grids, cf. [14], on the term ∂2

∂x2 ( 1
2σ

2p), one would end up with the same
discretization for the diffusion term.

To complete this semidiscretization, it also has to be defined at the boundaries of the truncated
domain such that conservation of the total mass is guaranteed. Given that p represents a density
function, it follows that ∫ ∞

−∞
p(x, τ)dx = 1, ∀τ > 0,

and hence ∫ ∞
−∞

[
∂
∂τ p
]
dx =

∫ ∞
−∞

[
1
2
∂2

∂x2

(
σ2p
)
− ∂

∂x (µp)
]
dx = 0.

Assuming that [xmin, xmax] is chosen sufficiently wide, the condition above can be approximated
by [

∂
∂x

(
1
2σ

2p
)
− (µp)

]∣∣x=xmax

x=xmin
= 0,

reflecting the fact that the total flux over the interval [xmin, xmax] is zero. As stated above, for
some choices of coefficient functions the spatial domain is naturally restricted. For example, if the
PDE (2.8) stems from a non-negative process, xmin can be set equal to zero. The no-flux boundary
condition above then still holds on the naturally restricted domain.

In theory it is possible that there is a positive flux at one of the boundaries, and exactly
the same negative flux at the other boundary. However, since the solution represents a density
function, it is more realistic to impose that no mass is coming in or going out at each of the
boundaries. In light of this, we assume that the following boundary conditions hold:[

∂
∂x

(
1
2σ

2p
)
− (µp)

]∣∣
x=xmin

= 0, (2.13)

[
∂
∂x

(
1
2σ

2p
)
− (µp)

]∣∣
x=xmax

= 0.

The numerical equivalent of the first condition is to say that the flux at x1 = xmin is zero, i.e.
f1(P, τ) ≡ f0.5(P, τ) = 0. This can be achieved by creating a ghost point x0 = x1−∆x2 and using
(2.13) to define the value of 1

2σ
2
0P0(τ) at the ghost point by

1
2σ

2
2P2(τ)− 1

2σ
2
0P0(τ)

2∆x2
− µ1P1(τ) = 0,

where we make use of the fact that the cell averages form second-order approximations to the
point values. Turning to (2.11) we define the diffusive flux fd,0.5 at x1 as

fd,0.5(P, τ) = −
1
2σ

2
2P2(τ)− 1

2σ
2
0P0(τ)

2∆x2
= −µ1P1(τ).
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Since x1 is the left boundary of the first cell, the flux on the boundary xmin stemming from the
advection part (see (2.10)) can be approximated as fa,0.5 = µ1P1(τ). Inserting these expressions
into (2.9) we obtain

P ′1(τ) = −f1.5(P, τ)
2

∆x1 + ∆x2
= −f1.5(P, τ)

2

∆x2
. (2.14)

The boundary condition at xmax can be handled analogously in order to get

P ′m(τ) = fm−0.5(P, τ)
2

∆xm
. (2.15)

By performing the discretization of the boundary conditions in this way, it follows that f0.5(P, τ) =
fm+0.5(P, τ) and we ensure that mass is conserved in the numerical scheme.

Combining (2.12), (2.14) and (2.15) we see that the total discretization can be written as a
system of ODEs

P ′(τ) = A(τ)P (τ) (2.16)

for τ > 0, with given matrix A(τ). Since Pi(τ) represent cell averages it is natural to define the
initial vector as

Pi(0) =


2

∆xi+∆xi+1
if X0 ∈ [xi−0.5, xi+0.5],

0 otherwise.

In general, the exact solution of the system of ODEs (2.16) can not be computed analytically and
one relies on numerical methods in order to approximate it. Since the discretization above often
leads to stiff semidiscrete systems, suitable implicit time stepping schemes such as the Crank–
Nicolson scheme are widely considered, see e.g. [29].

2.3 Numerical experiments for 1D forward Kolmogorov equations

In this subsection the performance of the FV discretization is tested by considering two practical
examples. As a first example, consider the SDE

dSτ = (rd − rf )Sτdτ + σBSSτdWτ ,

with σBS > 0, corresponding to the classical Black–Scholes model. Then, the underlying density
is known exactly and given by

p(s, τ) =
1

σBS
√
τ
φ

(
log(s/S0)− (rd − rf − 1

2σ
2
BS)τ

σBS
√
τ

)
1

s
, for s > 0, τ > 0, (2.17)

where φ(x) is the density function of a standard normally distributed random variable. The density
function p(s, τ) from (2.17) satisfies the PDE

∂
∂τ p = ∂2

∂s2

(
1
2σ

2
BSs

2p
)
− ∂

∂s ((rd − rf )sp) ,

for s, τ > 0, with p(s, 0) = δ(s−S0). This PDE is of the form (2.8) with a natural restriction of the
spatial domain. Note that for the numerical experiment we don’t apply the log-transformation from
Section 1 in order to have non-constant coefficients which makes the problem more challenging.

Firstly, the spatial domain is truncated to [Smin, Smax] = [0, 30S0] and we define a non-uniform
grid Smin = s1 < s2 < · · · < sm = Smax by making use of a sinh transformation of a uniform
underlying grid, cf. [14]. In Figure 1 the spatial grid is shown for the values S0 = 100,m = 50 and
from s = 0 to s = 5S0 to illustrate the smaller mesh widths around the point s = S0. Applying
the FV discretization from Subsection 2.2 then yields approximations Pi(τ) of the exact values
p(si, τ).
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Figure 1: Illustration of the non-uniform grid around s = S0 for the Black–Scholes example and
the actual values S0 = 100,m = 50.

When trying to determine the performance of a numerical method with respect to a reference
solution, it is important to take note of the computational environment in which values are cal-
culated, and to understand the impact that has on the comparison. Our calculations take place
in 64 bit IEEE floating point arithmetic. Since the solution of forward Kolmogorov equations
represents a probability density function, the magnitude of the solution varies dramatically over
the computational domain. This is especially true of the initial condition (a Dirac delta), and also
more generally with naturally bounded stochastic processes with an attainable boundary, c.f. the
SLV model (1.1) with 0 < α ≤ 1/2. Since IEEE floating point has a fixed-length mantissa, the
density function cannot be represented to a high absolute accuracy uniformly over the domain. In
areas where the density function is large, only high relative accuracy (correct number of digits) can
be achieved. In addition, since the numerical solution is obtained by using implicit time stepping,
we should not expect high relative accuracy of the numerical density in regions where the exact
solution is small. This is because when solving the linear systems we combine many terms with
very different magnitudes and then sum them up, which in IEEE arithmetic will lead to a loss of
relative accuracy. Therefore when comparing the numerical solution and the reference solution we
adopt a mixed absolute-relative error metric: we use relative error when the reference solution is
larger than 1, absolute error if the reference solution is less than 1, and we take the maximal error
value over the whole domain. More precisely, let

εi(m) =


∣∣∣p(si,T )−Pi(T )

p(si,T )

∣∣∣ if p(si, T ) > 1,

|p(si, T )− Pi(T )| else.

The total mixed spatial error is then defined by

ε(m) = max
1≤i≤m

εi(m).

The value of 1 is somewhat arbitrary. The results, however, are not that sensitive to the crossover
value as long as it is not too small. For the actual experiments, the values Pi(T ) are approximated
by applying the Crank–Nicolson time stepping scheme with a large number of steps such that the
temporal discretization error is negligible. In the left plot of Figure 2 the total mixed spatial error
is shown for the relevant situation where rd = 0.03, rf = 0.01, σBS = 0.2, T = 1 and for the
number of spatial grid points m = {50, 100, . . . , 1000}. The corresponding numerical solution for
m = 200 is shown in the right plot of Figure 2. The convergence plot clearly indicates that the
FV discretization is second-order convergent with respect to the current initial-boundary value
problem.

As a second example we consider the Cox–Ingersoll–Ross (CIR) process, cf. [3],

dVτ = κ(η − Vτ )dτ + ξ
√
VτdWτ ,

where κ, η, ξ are strictly positive parameters. The corresponding density function is given by, see
e.g. [3],

p(v, τ) = ce−u0−u1(u1

u0
)q/2Iq(2

√
u0u1), (2.18)

where
c = 2κ

ξ2(1−e−κτ ) , u0 = cV0e
−κτ , u1 = cv, q = 2κη

ξ2 − 1,

9



1/m
10-3 10-2 10-1

T
ot

al
 m

ix
ed

 s
pa

tia
l e

rr
or

10-7

10-6

10-5

10-4 Convergence of the FV scheme

s
0 50 100 150 200

P
N

0

0.005

0.01

0.015

0.02
Numerical density

Figure 2: Convergence results within the 1D Black–Scholes model. The parameter values are
rd = 0.03, rf = 0.01, σBS = 0.2, T = 1.

v
0 0.1 0.2

Figure 3: Illustration of the non-uniform grid around v = 0 and v = V0 for the CIR example and
the actual values V0 = 0.0625,m = 50.

and Iq(·) is the modified Bessel function of the first kind of order q. Note that the value of
q is directly related with the so-called Feller condition, i.e. with the possibility that Vτ = 0 is
attainable. The density function (2.18) satisfies the forward Kolmogorov equation

∂
∂τ p = ∂2

∂v2

(
1
2ξ

2vp
)
− ∂

∂v (κ(η − v)p) , (2.19)

for v, τ > 0, with p(v, 0) = δ(v − V0). It is readily seen that if the Feller condition is violated,
i.e. if q < 0, then the density from (2.18) is not defined at v = 0 and the density function tends
to infinity as v tends to zero. In addition, around v = 0 the PDE (2.19) is strongly convection
dominated which is very challenging for numerical discretization methods.

The domain is truncated to [Vmin, Vmax] = [0, 15] and a non-uniform grid 0 = v1 < v2 < · · · <
vm = Vmax is defined by making use of a sinh transformation of a uniform underlying grid. The
spatial grid is shown in Figure 3 for the values V0 = 0.0625,m = 50 and from v = 0 to v = 0.2 to
illustrate the smaller mesh widths around v = 0 and v = V0. Afterwards the FV discretization is
applied which leads to approximations Pj(T ), (1 ≤ j ≤ m). Recall that if q < 0, then the density
function tends to infinity as v tends to zero and at v = 0 the exact density function is not defined.
By increasing the number of spatial grid points m, the value of the second grid point v2 tends to
zero and adequately comparing the difference between p(v2, T ) and P2(T ) becomes difficult. In
view of this, we opt to compute the error on similar spatial domains. Let vlow be the smallest
non-zero grid point, i.e. the point v2, if the total number of spatial grid points m is 50. We then
define the total mixed spatial error by

max
j1≤j≤m

εj(m),

where, for given m, j1 is the lowest index such that vj1 ≥ vlow and

εj(m) =


∣∣∣p(vj ,T )−Pj(T )

p(vj ,T )

∣∣∣ if p(vj , T ) > 1,

|p(vj , T )− Pj(T )| else.
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Figure 4: Convergence results within the CIR model. The parameters are given by Set A.

The approximations Pj(T ) are determined by considering a large number of time steps such that
the temporal discretization error is negligible. Please note that the choice m = 50 for defining vlow
is not crucial. The conclusions of the numerical experiments are essentially unchanged as long as
vlow is defined via one of the coarsest grids considered in the experiment.

For the actual experiment we consider two sets of parameters:

κ η ξ V0 T
Set A 5 0.16 0.9 0.0625 0.25
Set B 1.15 0.0348 0.39 0.0348 0.25

These sets are taken from [7] and were also used in [26]. For Set A we have q = 0.98 and the variance
process remains strictly positive. For Set B we have q = −0.47 and Vτ = 0 is attainable. In the left
plot of Figure 4, respectively Figure 5, the total mixed spatial error is shown for the parameters
of Set A, respectively Set B, and for the number of spatial grid points m = {50, 100, . . . , 1000}. In
the right plots, the corresponding numerical solutions are shown for m = 200. The convergence
plots indicate that the FV discretization is convergent with respect to the current initial-boundary
value problems. Additional experiments suggest that FV discretization is second-order convergent
if the Feller condition is satisfied. If q < 0 the order of convergence can drop to one. In addition,
all the experiments confirm that the total numerical mass (2.6) stays constantly equal to one, even
if the Feller condition is strongly violated.

2.4 Two-Dimensional forward Kolmogorov equations

In this subsection, the FV discretization from the one-dimensional case is used to define a spatial
discretization for the general two-dimensional forward Kolmogorov equation (2.1). Suppose the
spatial domain is truncated to [xmin, xmax] × [ymin, ymax], and the spatial grid points in the x-
direction, respectively y-direction, are given by

xmin = x1 < x2 < . . . < xm1 = xmax,

respectively
ymin = y1 < y2 < . . . < ym2

= ymax.

Let ∆xi = xi − xi−1 and ∆yj = yj − yj−1 be the spatial mesh widths, where ∆x1 = ∆xm1+1 =
∆y1 = ∆ym2+1 = 0, and define volumes

Ωi,j := [xi−0.5, xi+0.5]× [yj−0.5, yj+0.5],

where xi±0.5, respectively yj±0.5, are defined analogously as in the one-dimensional case.
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Figure 5: Convergence results within the CIR model. The parameters are given by Set B.

We can now consider the two-dimensional equivalent of the cell averages, volume averages,
pi,j(τ) which are defined by

pi,j(τ) =
1

|Ωi,j |

∫
Ωi,j

p(x, y, τ)dxdy,

with |Ωi,j | = (xi+0.5 − xi−0.5)(yj+0.5 − yj−0.5) the area of the corresponding volume. The volume
average pi,j(τ) is again a second-order approximation to p(xi, yj , τ), provided that the underlying
meshes are smooth, and is the quantity that is approximated by the FV discretization. It is readily
verified that

|Ωi,j |
∂

∂τ
pi,j(τ) =

∫ yj+0.5

yj−0.5

[
∂

∂x

(
1

2
σ2

1p

)
− µ1p

]∣∣∣∣x=xi+0.5

x=xi−0.5

dy (2.20a)

+

∫ xi+0.5

xi−0.5

[
∂

∂y

(
1

2
σ2

2p

)
− µ2p

]∣∣∣∣y=yj+0.5

y=yj−0.5

dx (2.20b)

+
[

[ρσ1σ2p]|x=xi+0.5

x=xi−0.5

]∣∣∣y=yj+0.5

y=yj−0.5

, (2.20c)

and the two-dimensional discretization is based on the approximation

|Ωi,j |
∂

∂τ
pi,j(τ) ≈

[ [
∂

∂x

(
1

2
σ2

1p

)
− µ1p

]∣∣∣∣x=xi+0.5

x=xi−0.5

]∣∣∣∣
y=yj

∆yj + ∆yj+1

2
(2.21a)

+

[ [
∂

∂y

(
1

2
σ2

2p

)
− µ2p

]∣∣∣∣y=yj+0.5

y=yj−0.5

]∣∣∣∣
x=xi

∆xi + ∆xi+1

2
(2.21b)

+
[

[ρσ1σ2p]|x=xi+0.5

x=xi−0.5

]∣∣∣y=yj+0.5

y=yj−0.5

. (2.21c)

Equation (2.20) includes several flux terms that are similar to the flux terms in Subsections 2.1
and 2.2. It reflects the fact that the total integral of p over a volume changes only as a result of the
flux difference over the volume boundary. This is completely analogous with the one-dimensional
interpretation of (2.3). If the total flux over the boundary of the spatial domain is zero, i.e. if

0 =

∫ ymax

ymin

[
∂

∂x

(
1

2
σ2

1p

)
− µ1p

]∣∣∣∣x=xmax

x=xmin

dy

+

∫ xmax

xmin

[
∂

∂y

(
1

2
σ2

2p

)
− µ2p

]∣∣∣∣y=ymax

y=ymin

dx

+
[
[ρσ1σ2p]|x=xmax

x=xmin

]∣∣y=ymax

y=ymin
,

12



then the total integral of p over the entire domain is constant in time.
Let P i,j(τ) denote approximations to the exact value pi,j(τ), denote by P (τ) the m1 × m2

matrix with entries P i,j(τ) and let
P (τ) = vec[P (τ)],

where vec[·] denotes the operator that turns any given matrix into a vector by putting its successive
columns below each other. The bold notation is only introduced to indicate the subtle difference
between the matrix form and the vectorised form of the approximations. Similarly to the one-
dimensional discretization in Subsections 2.1 and 2.2, we discretize (2.21) in the following way by
introducing numerical fluxes

P ′i,j(τ) = [fi−0.5,j(P, τ)− fi+0.5,j(P, τ)]
2

∆xi + ∆xi+1
(2.22a)

+ [fi,j−0.5(P, τ)− fi,j+0.5(P, τ)]
2

∆yj + ∆yj+1
(2.22b)

+

1∑
i1,j1=0

(−1)i1+j1fm,i−0.5+i1,j−0.5+j1

2

∆xi + ∆xi+1

2

∆yj + ∆yj+1
, (2.22c)

for 1 ≤ i ≤ m1, 1 ≤ j ≤ m2. For the ease of presentation, denote

µ1,i±0.5,j = µ1(xi±0.5, yj , τ), σ1,i,j = σ1(xi, yj , τ),
µ2,i,j±0.5 = µ2(xi, yj±0.5, τ), σ2,i,j = σ2(xi, yj , τ),
σ1,i±0.5,j±0.5 = σ1(xi±0.5, yj±0.5, τ), σ2,i±0.5,j±0.5 = σ2(xi±0.5, yj±0.5, τ).

Since the actual form of the fluxes in (2.21) is completely similar to the form of the fluxes in
Subsection 2.4, we define the numerical fluxes by

fi±0.5,j(P, τ) = fa,i±0.5,j(P, τ) + fd,i±0.5,j(P, τ),

with

fa,i−0.5,j(P, τ) = µ1,i−0.5,j
P i−1,j(τ) + P i,j(τ)

2
≈ µ1,i−0.5,jp(xi−0.5, yj , τ),

and

fd,i−0.5,j(P, τ) =
1
2σ

2
1,i−1,jP i−1,j(τ)− 1

2σ
2
1,i,jP i,j(τ)

∆xi
≈ − ∂

∂x

(
1
2σ

2
1(x, yj , τ)p(x, yj , τ)

)
|x=xi−0.5

,

for 2 ≤ i ≤ m1, 1 ≤ j ≤ m2. Moreover

fi,j±0.5(P, τ) = fa,i,j±0.5(P, τ) + fd,i,j±0.5(P, τ),

where

fa,i,j−0.5(P, τ) = µ2,i,j−0.5
P i,j−1(τ) + P i,j(τ)

2
≈ µ2,i,j−0.5p(xi, yj−0.5, τ),

and

fd,i,j−0.5(P, τ) =
1
2σ

2
2,i,j−1P i,j−1(τ)− 1

2σ
2
2,i,jP i,j(τ)

∆yj
≈ − ∂

∂y

(
1
2σ

2
2(xi, y, τ)p(xi, y, τ)

)
|y=yj−0.5

,

for 1 ≤ i ≤ m1, 2 ≤ j ≤ m2 Finally, for the mixed spatial derivative we define

fm,i−0.5,j−0.5(P, τ) = ρσ1,i−0.5,j−0.5σ2,i−0.5,j−0.5
P i−1,j−1(τ) + P i−1,j(τ) + P i,j−1(τ) + P i,j(τ)

4
≈ ρσ1(xi−0.5, yj−0.5, τ)σ2(xi−0.5, yj−0.5, τ)p(xi−0.5, yj−0.5, τ), (2.23)

for 1 ≤ i ≤ m1 + 1, 1 ≤ j ≤ m2 + 1, where it is assumed that

P 0,j(τ) := P 1,j(τ), Pm1+1,j(τ) := Pm1,j(τ), P i,0(τ) := P i,1(τ), P i,m2+1(τ) := P i,m2
(τ),
(2.24)
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such that the general formula is naturally extended at the boundaries of the spatial domain.
The numerical flux term (2.23) can be viewed as the result of applying the discretization for the
advection part first in the x-direction and then in the y-direction.

The semidiscretization is completed by defining boundary conditions and discretizations at the
boundaries of the truncated domain. Since p is again a density function, it follows that∫ ∞

−∞

∫ ∞
−∞

[
∂
∂τ p
]
dxdy = 0.

Inserting the right hand side of the PDE (2.1), this can be rewritten as

0 =

∫ ∞
−∞

(∫ ∞
−∞

[
∂2

∂x2

(
1
2σ

2
1p
)
− ∂

∂x (µ1p)
]
dx

)
dy

+

∫ ∞
−∞

(∫ ∞
−∞

[
∂2

∂y2

(
1
2σ

2
2p
)
− ∂

∂y (µ2p)
]
dy

)
dx

+

∫ ∞
−∞

∫ ∞
−∞

∂2

∂x∂y (ρσ1σ2p) dxdy.

Analogously to the one-dimensional case it is assumed that the boundaries are chosen sufficiently
far away from the spot value (X0, Y0) or that they are defined by a natural truncation of the
spatial domain. The condition above is then approximated by

0 =

∫ ymax

ymin

[
∂
∂x

(
1
2σ

2
1p
)
− µ1p

]∣∣x=xmax

x=xmin
dy

+

∫ xmax

xmin

[
∂
∂y

(
1
2σ

2
2p
)
− µ2p

]∣∣∣y=ymax

y=ymin

dx

+

∫ ymax

ymin

∫ xmax

xmin

∂2

∂x∂y (ρσ1σ2p) dxdy. (2.25)

Note that by assuming that

ρσ1σ2p|x=xmin,y=ymin = ρσ1σ2p|x=xmin,y=ymax = ρσ1σ2p|x=xmax,y=ymin = ρσ1σ2p|x=xmax,y=ymax = 0,
(2.26)

the last integral, corresponding with the mixed derivative term, is always equal to zero. Next, we
generalise the idea that there are no fluxes at the boundaries, i.e. that no mass is coming in or
going out at the boundaries. In light of this it is assumed that the following boundary conditions
hold: [

∂
∂x

(
1
2σ

2
1p
)
− (µ1p)

]∣∣
x=xmin

= 0, for ymin ≤ y ≤ ymax,

[
∂
∂x

(
1
2σ

2
1p
)
− (µ1p)

]∣∣
x=xmax

= 0, for ymin ≤ y ≤ ymax,[
∂
∂y

(
1
2σ

2
2p
)
− (µ2p)

]∣∣∣
y=ymin

= 0, for xmin ≤ x ≤ xmax,[
∂
∂y

(
1
2σ

2
2p
)
− (µ2p)

]∣∣∣
y=ymax

= 0, for xmin ≤ x ≤ xmax.

By combining this boundary conditions with the assumption (2.26) it follows that condition (2.25)
is satisfied.

For the discretization of the one-dimensional fluxes in (2.21a) and (2.21b) at the boundaries
of the truncated domain, the approach from the one-dimensional case is generalised. By using
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a similar discretization of the boundary conditions, one ends up with numerical fluxes which are
zero at the boundaries, i.e. with

f0.5,j(P, τ) = fm1+0.5,j(P, τ) = fi,0.5(P, τ) = fi,m2+0.5(P, τ) = 0,

for 1 ≤ i ≤ m1, 1 ≤ j ≤ m2. The fluxes stemming from the mixed derivative term, see (2.21c),
are discretized at the boundaries by using (2.23) in combination with (2.24). It is readily verified
that if

0 = ρσ1,1,1σ2,1,1P 1,1(τ) = ρσ1,1,m2
σ2,1,m2

P 1,m2
(τ)

= ρσ1,m1,1σ2,m1,1Pm1,1(τ) = ρσ1,m1,m2
σ2,m1,m2

Pm1,m2
(τ),

which is the semidiscrete version of (2.26), then the total numerical flux over the boundary of the
spatial domain is equal to zero and the total numerical mass is kept constant in time, i.e.

m1∑
i=1

m2∑
j=1

P i,j(τ)|Ωi,j | = constant, for τ ≥ 0.

As stated above, some processes are naturally bounded, e.g. the general variance process from
Section 1 can never become negative. Suppose for example that the process corresponding with
the y-variable in the PDE (2.1) is bounded from below. Then, ymin is naturally taken equal to this
lower boundary. Moreover, it can happen that this lower boundary is attainable (cf. the variance
process from Section 1 with α < 1/2) and probability mass can stack up at this boundary. This
can cause instabilities in the approximation of the mixed derivative term near this boundary. In
order to deal with this, if for example the boundary ymin is attainable, the central FV scheme in
the y-direction for the ”mixed derivative fluxes” (2.21c) at ymin+ 1

2∆y2 are replaced by a first-order
forward scheme. More precisely, the fm,i±0.5,1.5(P, τ) from above are then replaced by

fm,i−0.5,1.5(P, τ) = ρσ1,i−0.5,1.5σ2,i−0.5,1.5
P i−1,2(τ) + P i,2(τ)

2
,

for 1 ≤ i ≤ m1 + 1, where

P 0,2(τ) := P 1,2(τ), Pm1+1,2(τ) := Pm1,2(τ).

The total spatial discretization (2.22) yields a large system of differential equations. By making
use of the Kronecker product, this system of differential equations can be written as a system of
ODEs

P ′(τ) = A(τ)P (τ), (2.27)

for τ > 0 and with given matrix A(τ). Analogously to the one-dimensional case, since the values
P i,j(τ) can be seen as approximations of the cell averages p(xi, yj , τ), it is natural to define the
initial vector as P (0) = vec[P (0)] where

P i,j(0) =


1
|Ωi,j | if (X0, V0) ∈ Ωi,j ,

0 else.

Note that the matrix A can be split as

A = A0 +A1 +A2,

where A1, respectively A2, represents the discretization of the spatial derivatives in the first,
respectively second, spatial dimension. The matrix A0 represents the discretization of the mixed
spatial derivative term in (2.1). It is readily verified that A1 is tridiagonal, A2 is essentially
tridiagonal and A0 has in general nine non-zero elements per row and column. In Section 3 this
structure is used to perform an effective time discretization of the general system of ODEs (2.27).
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Figure 6: Illustration of the non-uniform grid around (S1,0, S2,0) for the Black–Scholes example
and the actual values S1,0 = S2,0 = 100, m1 = m2 = 50.

2.5 Numerical experiments for 2D forward Kolmogorov equations

In this section the performance of the 2D FV discretization is tested for two practical examples. For
the first experiment we consider the two-dimensional Black–Scholes model which can be described
by the system of SDEs 

dS1,τ = rS1,τdτ + σ1,BSS1,τdW
(1)
τ ,

dS2,τ = rS2,τdτ + σ2,BSS2,τdW
(2)
τ ,

with dW
(1)
τ · dW (2)

τ = ρdτ , −1 ≤ ρ ≤ 1 and r, σ1,BS , σ2,BS strictly positive constants. The
corresponding forward Kolmogorov equation is given by

∂
∂τ p = ∂2

∂s21

(
1
2σ

2
1,BSs

2
1p
)

+ ∂2

∂s1∂s2
(ρσ1,BSσ2,BSs1s2p) + ∂2

∂s21

(
1
2σ

2
2,BSs

2
2p
)
− ∂

∂s1
(rs1p)− ∂

∂s2
(rs2p) ,

for s1, s2, τ > 0 and with p(s1, s2, 0) = δ(s1 − S1,0)δ(s2 − S2,0) for given values S1,0, S2,0. The
exact solution is known analytically and can be written as

p(s1, s2, τ) = n2(log(s1/S1,0), log(s2/S2,0), τ)
1

s1

1

s2
, for s1 > 0, s2 > 0, τ > 0,

where this time n2(x, y, τ) is the density function of a two-dimensional normally distributed ran-
dom variable with mean µ and covariance matrix Σ given by

µ =

 (r − 1
2σ

2
1,BS)τ

(r − 1
2σ

2
2,BS)τ

 , Σ =

 σ2
1,BSτ ρσ1,BSσ2,BSτ

ρσ1,BSσ2,BSτ σ2
2,BSτ

 .
Similarly to the domain truncation in the one-dimensional numerical experiment from Sub-

section 2.3, the spatial domain is truncated to [S1,min, S1,max] × [S2,min, S2,max] = [0, 30S1,0] ×
[0, 30S2,0]. The Cartesian spatial grid,

(s1,i, s2,j) for 1 ≤ i ≤ m1, 1 ≤ j ≤ m2,

is constructed by considering the spatial grid from Subsection 2.3 in both spatial dimension. In
Figure 6 this spatial grid is illustrated within the region [0, 5S1,0]× [0, 5S2,0] for S1,0 = S1,0 = 100
and m1 = m2 = 50. The FV discretization from Subsection 2.4 then defines approximations
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Figure 7: Convergence results within the 2D Black–Scholes model. The parameter values are
r = 0.03, σ1,BS = 0.2, σ2,BS = 0.25, ρ = −0.7, T = 1.

P i,j(τ) to p(s1,i, s2,j , τ) and we compute the total mixed spatial error

max
1≤i≤m1,1≤j≤m2

εi,j(m),

where

εi,j(m) =


∣∣∣p(s1,i,s2,j ,T )−P i,j(T )

p(s1,i,s2,j ,T )

∣∣∣ if p(s1,i, s2,j , T ) > 1,

|p(s1,i, s2,j , T )− P i,j(T )| else.

The values P i,j(T ) are calculated by applying the Hundsdorfer–Verwer time stepping method
(see Section 3) with a large number of time steps such that the temporal discretization error is
negligible. In Figure 7 the total mixed spatial error is shown for the realistic parameter values
r = 0.03, σ1,BS = 0.2, σ2,BS = 0.25, ρ = −0.7, T = 1 and for the number of spatial grid points
m1 = m2 = {50, 100, . . . , 500}. The convergence plot indicates that the FV discretization is
second-order convergent with respect to the current initial-boundary value problem.

For the second example we consider the popular Heston model [13], i.e. the SV model (1.3)
with ψ(v) =

√
v and α = 1/2. The underlying density function satisfies the forward Kolmogorov

equation

∂
∂τ p = ∂2

∂x2

(
1
2vp
)

+ ∂2

∂x∂v (ρξvp) + ∂2

∂v2

(
1
2ξ

2vp
)
− ∂

∂x

(
(rd − rf − 1

2v)p
)
− ∂

∂v (κ(η − v)p) , (2.28)

for x ∈ R, v > 0, τ > 0 and with initial condition p(x, v, 0) = δ(x)δ(v − V0) where X0 = 0 and V0

is given. To the best of our knowledge, no analytical solution is available in the literature for the
density function p that satisfies (2.28). In order to test the performance of our FV discretization,
we compute a reference solution with an alternative discretization method described in [7]. The
latter method is based on rewriting

p(x, v, τ) = p1(x, τ |VSV,τ = v)p2(v, τ), (2.29)

where p2(v, τ) denotes the one-dimensional density of the volatility process, and p1(x, τ |VSV,τ = v)
denotes the conditional density of Xτ given the variance value VSV,τ = v. In [7] the characteristic
function

ψ(ω|VSV,τ = v) = E[exp( iωXSV,τ )|VSV,τ = v]

corresponding with p1(x, τ |VSV,τ = v) is given in semi-analytical form and it is stated that p2(v, τ)
is given by (2.18). By using the COS-method [6] we approximate the conditional density function
p1(x, τ |VSV,τ = v) and our reference solution pref is then defined via (2.29).
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Figure 8: Illustration of the non-uniform grid around (X0, V0) for the Heston example and the
actual values X0 = 0, V0 = 0.0625, m1 = 2m2 = 50.

In the numerical experiment, we opt to truncate the domain in the x-direction to [X0 −
log(30), X0 + log(30)]. The spatial domain in the v-direction is truncated to [0, 15], analogously
to the CIR example. We consider spatial grids

− log(30) = x1 < x2 < · · · < xm1
= log(30),

0 = v1 < v2 < · · · < vm2
= 15,

with m1 = 2m2, which are similar to the ones described in [10] and such that there exist indices
i0, j0 such that (xi0 , vj0) = (X0, V0). In Figure 8 the spatial grid is shown for X0 = 0, V0 = 0.0625
and the sample value m1 = 2m2 = 50. Applying the FV discretization then yields approximations
P i,j(τ) to p(xi, vj , τ). From equation (2.29) and the CIR example it follows that if q = 2κη

ξ2 −1 < 0,
then the density function can tend to infinity as v tends to zero and at v = 0 the exact density
is not defined. Analogously to the remark in Subsection 2.3, it is readily seen that adequately
comparing the difference between p(xi, v2, T ) and Pi,2(T ) then becomes difficult for increasing
values of m2. The error is therefore computed on similar spatial domains. Let vlow again be the
smallest non-zero grid point in the v-direction if the total number of grid points in that direction
is m2 = 50. For given m2, let j1 be the lowest index such that vj1 ≥ vlow and define the total
mixed spatial error by

max
1≤i≤m1,j1≤j≤m2

εi,j(m),

where

εi,j(m) =


∣∣∣pref (xi,vj ,T )−P i,j(T )

pref (xi,vj ,T )

∣∣∣ if pref (xi, vj , T ) > 1,

|pref (xi, vj , T )− P i,j(T )| else.

The values Pi,j(T ) are once more approximated by applying the Hundsdorfer–Verwer time stepping
method (see Section 3) with a small time step such that the temporal discretization error is
negligible.

For the actual numerical experiments we consider an extension of the two sets of parameters
used in Subsection 2.3. The extensions are also taken from [7], used in [26], and given by

κ η ξ ρ rd rf X0 V0 T
Set C 5 0.16 0.9 0.1 0.1 0 0 0.0625 0.25
Set D 1.15 0.0348 0.39 -0.64 0.04 0 0 0.0348 0.25
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Figure 9: Convergence results within the Heston model. The parameters are given by Set C.
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Figure 10: Convergence results within the Heston model. The parameters are given by Set D.

Recall that for Set C we have that q = 0.98 and for Set D it holds that q = −0.47. In the left plot
of Figure 9, respectively Figure 10, the total mixed spatial error is shown for the parameters of Set
C, respectively Set D, and for the number of spatial grid points m1 = 2m2 = {50, 100, . . . , 500}.
In the right plots, the corresponding numerical solutions are shown for m1 = 2m2 = 200. The
convergence plots indicate that the FV discretization is convergent with respect to the current
initial-boundary value problems. Additional experiments again suggest that the FV discretization
is second-order convergent if the Feller condition is satisfied. If q < 0 the order of convergence
can drop to one. Please note that the conclusions of the numerical experiments are essentially
unchanged for different values of vlow as long as it is defined via one of the coarsest grids considered
in the experiment. The two-dimensional tests also confirm that the total numerical mass is, indeed,
kept constantly equal to one, even if the Feller condition is strongly violated.

3 Temporal discretization by ADI methods

In general, spatial discretization by FV methods of initial-boundary value problems for time-
dependent convection diffusion equations leads to large systems of stiff ODEs of the type

W ′(τ) = F (τ,W (τ)) (0 ≤ τ ≤ T ), W (0) = W0,
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with given vector-valued function F : [0, T ] × Rm → Rm and given vector W0 ∈ Rm where m is
the number of volumes. When the function F is stemming from semidiscretization of a multidi-
mensional PDE, classical implicit time stepping schemes such as the Crank–Nicolson scheme can
often be very time consuming. For the effective time discretization of such semidiscrete systems,
operator splitting schemes of the Alternating Direction Implicit (ADI) type are widely considered.
In the past decades, several ADI schemes have been studied for the situation where mixed spatial
derivatives are present in the convection-diffusion equation. Mixed derivative terms are ubiqui-
tous, notably, in the field of financial mathematics. There they arise due to correlations between
the underlying stochastic processes, cf. the general SLV model (1.1).

In this paper we consider the state-of-the-art Hundsdorfer–Verwer (HV) scheme, [19, 31], which
is of the ADI-type. Suppose the semidiscrete operator F is stemming from the semidiscretization
of a two-dimensional convection-diffusion equation and suppose F can be decomposed as

F (τ, w) = F0(τ, w) + F1(τ, w) + F2(τ, w) (0 ≤ τ ≤ T,w ∈ Rm),

where F0 represents the mixed spatial derivative term and F1, respectively F2, represents all spatial
derivative terms in the first, respectively second, spatial direction. Let θ > 0 be a given parameter,
N ≥ 1 the number of time steps and τn = n∆τ with ∆τ = T/N . Then the HV scheme defines
approximation Wn to W (τn) successively for n = 1, 2, 3, . . . , N through

Y0 = Wn−1 + ∆τ F (τn−1,Wn−1),

Yl = Yl−1 + θ∆τ (Fl(τn, Yl)− Fl(τn−1,Wn−1)) , l = 1, 2,

Ỹ0 = Y0 + 1
2∆τ (F (τn, Y2)− F (τn−1,Wn−1)) ,

Ỹl = Ỹl−1 + θ∆τ (Fl(τn, Ỹl)− Fl(τn, Y2)), l = 1, 2,

Wn = Ỹ2.

(3.1)

The HV scheme (3.1) starts with an explicit Euler predictor stage, followed by two implicit but
unidirectional corrector stages. Then a second explicit stage is performed, followed again by
two implicit unidirectional corrector stages. The operator F0, which contains the mixed spatial
derivative term, is always treated in an explicit manner. The implicit stages only handle spatial
derivatives in only one spatial dimension. This can lead to a major computational advantage in
comparison to classical non-splitted implicit time stepping methods.

Recently, various positive stability results for the HV scheme have been derived relevant to
multidimensional convection-diffusion equations with mixed derivative term, see e.g. [15, 16, 17].
Subsequently, it has been proved [18] that, under some natural stability and smoothness assump-
tions, the HV scheme is second-order convergent with respect to the time step whenever it is applied
to semidiscrete two-dimensional convection-diffusion equations with mixed derivative term. The
temporal convergence result from [18] has the key property that it holds uniformly in the spatial
mesh width.

In this article, the vector P (0) is stemming from an initial function that is nonsmooth. It
is well-known that convergence of time discretization methods can then be seriously impaired,
cf. [22, 32]. A convergence analysis for the HV scheme relevant to nonsmooth data is still open in
the literature. In order to prevent the numerical solution from undesirable behaviour, Rannacher
time stepping will be applied, that is, the first few time steps of the HV scheme are replaced by
twice as many half time steps of the implicit Euler scheme [23]. Numerical experiments in [10, 14]
indicate that the HV scheme then remains second-order convergent. We opt to replace here the
first two HV time steps by four half time steps of the implicit Euler scheme. This choice is based
on the results in [32] for the Modified Craig–Sneyd scheme which forms another popular ADI
scheme for multidimensional convection-diffusion equations with mixed derivative terms. Note
that applying Rannacher time stepping to systems of ODEs stemming from multidimensional
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convection-diffusion equations can be time consuming if exact solvers are used. In order to limit
this drawback, the implicit Euler time steps are performed with a suitable multigrid solver, [12].

4 Calibration of SLV models to the LV model

As stated in Section 1, the goal of the paper is to calibrate state-of-the-art SLV models to its
underlying LV model in order to reproduce the known prices for European call and put options.
This is done by defining the leverage function σSLV such that the relationship (1.5) is satisfied. By
combining equations (1.5), (1.6) and (1.7), it is readily seen that a highly non-linear PDE needs
to be solved. In this section the FV-ADI method is used in combination with an inner iteration
to approximate the corresponding leverage function and density function.

In order to use the FV-ADI discretization, one first has to define spatial and temporal grids.
Since the initial function of forward Kolmogorov equations is highly non-smooth around the spot
value (X0, V0), and the region of interest is also situated around this value, it is natural to consider
non-uniform Cartesian grids that are concentrated around the value (X0, V0). If the parameter α
from the SLV model is chosen smaller than or equal to 1/2, then the natural boundary Vτ = 0
can be reached and probability mass stacks up at the boundary v = 0. It is then natural to
additionally require smaller mesh widths in the v-direction at this boundary. The non-uniform
grids define volumes of which the volume average is approximated by the FV scheme. Denote by
m1, respectively m2, the number of spatial grid points in the x-direction, respectively v-direction.
We consider spatial grids

xmin = x1 < x2 < · · · < xm1
= xmax,

0 = v1 < v2 < · · · < vm2
= Vmax,

which are similar to the ones described in [10] and such that there exist indices i0, j0 such that
(xi0 , vj0) = (X0, V0). Denote their corresponding mesh widths by ∆xi,∆vj and define volumes

Ωi,j = [xi−0.5, xi+0.5]× [vj−0.5, vj+0.5],

where the values xi−0.5, vj−0.5 are defined similar as in Section 2. The spatial grids are the result
of a continuous transformation of a uniform underlying grid and it can be shown that the pertinent
meshes are smooth. The values xmin, xmax, Vmax are chosen sufficiently far away from the spot
value such that the boundary conditions from Section 2 can be applied. An example of the spatial
grid for the small sample values m1 = 2m2 = 50 was already shown in Figure 8 for the case where
(X0, V0) = (0, 0.0348). For the discretization in time we always consider uniform grids τn = n∆τ
where the step size is given by ∆τ = T/N and N denotes the total number of time steps.

Once the spatial grid and corresponding volumes are defined, the FV discretization from Section
2 is applied. This yields a large system of ordinary differential equations

P ′(τ) = A(τ)P (τ) = (A0(τ) +A1(τ) +A2(τ))P (τ) (0 ≤ τ ≤ T ), (4.1)

with given matrices A0(τ), A1(τ), A2(τ) and initial function defined via

P i,j(0) =


2

∆xi−1+∆xi
2

∆vj−1+∆vj
if (i, j) = (i0, j0),

0 else.

The matrices A0, A1 contain, however, the unknown function σSLV at the spatial grid points.
The Pi(τ) can be used in combination with a numerical integration technique to approximate the
conditional expectations (1.6) and hence the pertinent leverage function. We opt to perform the
numerical integration with the trapezoidal rule and define approximations

Ei(τ) =

∑m2

j=1 ψ
2(vj)P i,j(τ)

∆vj+∆vj+1

2∑m2

j=1P i,j(τ)
∆vj+∆vj+1

2

≈ E[ψ2(Vτ )‖Xτ = xi], (4.2)
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where we recall that ∆v1 = ∆vm2+1 = 0. Inserting the approximations (4.2) into (4.1) leads to a
non-linear system of ODEs.

As a final step, the system of ODEs (4.1) is discretized in time with the time stepping scheme
from Section 3 and an inner iteration to handle the non-linearity, cf. [28]. By applying the HV
scheme, the conditional expectations (4.2) are naturally replaced by their fully discrete versions

En,i =

∑m2

j=1 ψ
2(vj)P n,i,j

∆vj+∆vj+1

2∑m2

j=1P n,i,j
∆vj+∆vj+1

2

, (4.3)

and we define the leverage function σSLV at the spatial and temporal grid by

σSLV (xi, τn) =
σLV (xi, τn)√

En,i
. (4.4)

It is readily seen that at the initial time level, i.e. at n = 0, the expression (4.3) is only defined if
i = i0. To render the calibration procedure feasible we put

E0,i = ψ2(V0) for 1 ≤ i ≤ m1.

For strictly positive time levels, i.e. for n > 0, the exact density p(xi, vj , τn) is always non-
negative. By performing the spatial and temporal discretization, however, it is possible that some
of the values P n,i,j become (slightly) negative. In order to prevent the numerical solution from
undesirable behaviour, the expression (4.3) is replaced in the calibration procedure by

En,i =

∑m2

j=1 ψ
2(vj)|P n,i,j |∆vj+∆vj+1

2∑m2

j=1 |P n,i,j |∆vj+∆vj+1

2

for 1 ≤ i ≤ m1, n > 0. (4.5)

Theoretically it is possible that the denominator (and hence also the nominator) of (4.5) equals
zero and the fully discrete conditional expectation is undefined. In this case we assume that the
conditional expectation is locally constant in time and set En,i = En−1,i. Let Q ≥ 1 be a given
integer. For the actual calibration of the SLV model to the LV model, we employ the following
numerical procedure.

for n is 1 to N do

let Pn = Pn−1 be an initial approximation to P (τn);

for q is 1 to Q do

(a) approximate the conditional expectations E[ψ2(Vτn)|Xτn = xi] by (4.5);

(b) Define σSLV (·, τn) on the grid in the x-direction by formula (4.4);

(c) update Pn by performing a numerical time step for (4.1) from τn−1 to τn;

end

end

Whenever a time step from τn−1 to τn with the HV scheme is replaced by two half-time steps of
the implicit Euler scheme, the inner iteration above is first performed for the substep from τn−1 to
τn−1/2 = τn−1 +∆τ/2, yielding an approximation of P (τn−∆τ/2) and σSLV (·, τn−∆τ/2). Next,
the inner iteration is performed for the substep from τn −∆τ/2 to τn, yielding an approximation
of P (τn) and σSLV (·, τn). Upon completion of the time stepping and iteration procedure above,
the original approximation for σSLV (·, 0) is replaced on the grid in the x-direction by σSLV (·, τ1).
This appears more realistic as the original approximation was actually only valid for the index
i = i0.
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Figure 11: Local volatility function originating from actual EUR/USD vanilla option data (market
data as of 2 March 2016). The spot rate S0 = 1.08815.

5 Numerical experiments on the calibration of SLV models

In this section, the effectiveness of the calibration procedure is illustrated by applying it to a
practical example. Here, we opt to consider the popular and challenging Heston-based SLV model,
i.e. SLV model (1.1) with ψ(v) =

√
v and α = 1/2, to describe the evolution of the EUR/USD

exchange rate.
As stated in the introduction, in financial practice it is common to first determine the SV

parameters of the underlying SV model and to define the LV function such that the LV model
reproduces the known market prices for European call and put options. Afterwards, the calibration
procedure aims at matching the SLV model with its underlying LV model, i.e. at obtaining equality
(1.4). In this article, we assume that the SV parameters and the LV function are known and we
then apply the calibration procedure from Section 4. The performance is illustrated by comparing
the densities from the LV model and from the SLV model and by comparing the corresponding
option values.

For the actual experiments we consider the following sets of SV parameters:

κ η ξ ρ T V0

Set E 5 0.16 0.9 0.1 0.25 0.0625
Set F 1.15 0.0348 0.39 −0.64 0.25 0.0348
Set G 1.50 0.0154 0.24 −0.11 1 0.0154

The Sets E and F correspond with the SV parameters from Sets C and D, and are taken from
[7]. Set G is taken from [2] and corresponds to the EUR/USD exchange rate for the pertinent
maturity (market data as of 16 September 2008). For Set E it holds that q = 2κη

ξ2 − 1 = 0.98
and the process Vτ is strictly positive. For Set F, respectively Set G, it holds that q = −0.47,
respectively q = −0.20, such that Vτ = 0 is attainable. The LV model is completely determined
by the LV function, the risk-free interest rates and the spot value S0. We assume that the risk-free
interest rates are given by

rd = 0.02, rf = 0.01,

and that the LV function is as displayed in Figure 11. The pertinent LV function originates from
actual EUR/USD vanilla option data (market data as of 2 March 2016) and is constructed by
using an SSVI-type method for implied volatility interpolation, [8]. The corresponding spot rate
is given by

S0 = 1.08815.
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Figure 12: Approximation of the density function pLV (x, 0.25) (left) and pLV (x, 1) (right) by
applying the FV discretization from Subsection 2.2 with m = 400.

Note that, even if the LV function is given, there is often no analytical expression available for the
density function pLV or the option values. It is well-known, however, that the density function
satisfies the 1D forward Kolmogorov equation

∂
∂τ pLV = ∂

∂x2

(
1
2σ

2
LV pLV

)
− ∂

∂x

(
(rd − rf − 1

2σ
2
LV )pLV

)
,

for x ∈ R, τ > 0. By applying the FV discretization described in Subsection 2.2 one defines
approximations PLV,i(τ) of the exact density values pLV (xi, τ). Fully discrete approximations
PLV,N,i of pLV (xi, T ) are then obtained by applying a suitable time stepping method. In Figure
12 the latter approximations are shown for τ = 0.25, respectively τ = 1, and the practical value
m = 400.

Once the underlying SV model and LV model are specified, the calibration procedure from
Section 4 can be applied. For the actual experiments we consider the discretization parameters

m1 = 400, m2 = 200, ∆τ = 1/200, θ = 1
2 + 1

6

√
3, Q = 2.

In Figure 13 the resulting discrete leverage function is shown for set G. In order to illustrate the
performance of the calibration, we first consider a discrete version of (1.4). More precisely, the
discrete numerical densities PLV,N,i from the LV model are compared with

PSLV,N,i :=

m2∑
j=1

PN,i,j
∆vj+∆vj+1

2 ,

which can be seen as the fully discrete approximations of∫ ∞
0

p(xi, v, T )dv,

within the SLV model after applying the trapezoidal rule for numerical integration. In the left
plots of Figure 14 the approximations PSLV,N are shown for each of the three sets of parameters.
In the right plots, the corresponding differences PLV,N − PSLV,N are plotted. Note that the final
time T = 0.25 for Set E and Set F, and T = 1 for Set G. From Figure 14 it is readily seen
that the difference between the fully discrete numerical densities is very small and hence that the
calibration procedure performs well.

The main goal of the calibration procedure is to define the leverage function in such a way that
the LV model and the SLV model define the same fair values for non-path-dependent European
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Figure 13: Leverage function stemming from the calibration procedure with local volatility function
from Figure 11, SV parameters from Set G and values m1 = 400, m2 = 200, ∆τ = 1/200,
θ = 1

2 + 1
6

√
3, Q = 2.

options. If the leverage function is defined by (1.5), then it follows for the fair value (FaV) of such
an option with payoff u0(x), x ∈ R, at maturity T that

FaV = e−rdT
∫ ∞
−∞

pLV (x, T )u0(x)dx = e−rdT
∫ ∞

0

∫ ∞
−∞

p(x, v, T )u0(x)dxdv.

Given the approximations PLV,N and PN , the pertinent FaV can easily be approximated by
applying numerical integration with the trapezoidal rule. In case of the SLV model, it is readily
seen that defining the approximated FaV via PN and the trapezoidal rule is equivalent with
defining the FaV via PSLV,N and the trapezoidal rule. Denote by FaVLV , respectively FaVSLV ,
the approximated fair values obtained via PLV,N , respectively PSLV,N . We now compare these
approximations for a set of European call options with a range of strikes given by

K = 0.75S0, 0.8S0, 0.9S0, S0, 1.1S0, 1.2S0, 1.25S0.

When the strike increases relatively to S0, the fair value of European call options tends to zero and
it is difficult to adequately compare approximations. In financial practice, European call and put
options are often quoted in terms of implied volatility. Let σimp,LV , respectively σimp,SLV , denote
the implied volatility (in %) corresponding to FaVLV , respectively FaVSLV . In the following we
test the performance of the calibration procedure by calculating the absolute implied volatility
errors

εimp = |σimp,LV − σimp,SLV |.

In Table 1 these errors are presented for the different SV parameter sets, taking the same values
of m,m1,m2,∆τ, θ,Q as above. The somewhat larger values εimp for T = 0.25 compared to T = 1
can be explained from the fact that the implied volatility is more sensitive to changes in the fair
value when the maturity is low. The results in Table 1 confirm that the calibration procedure
performs well. They indicate that the fully discrete leverage surface is, indeed, defined such that
the SLV model reproduces accurately the known market prices for European call options.

6 Conclusion

Stochastic local volatility (SLV) models constitute state-of-the-art models to describe asset price
processes. Their calibration to the underlying local volatility model is, however, highly non-trivial.
It incorporates the solution of non-linear forward Kolmogorov equations. In general, no analytical
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Figure 14: Comparison of the fully discrete density functions PLV,N and PSLV,N for each of the
parameters sets and for values m1 = 400, m2 = 200, ∆τ = 1/200, θ = 1

2 + 1
6

√
3, Q = 2.
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T = 0.25 Set E Set F T = 1 Set G
K/S0 σimp,LV εimp εimp σimp,LV εimp
0.75 19.18 0.1005 0.1208 21.94 0.0021
0.80 18.40 0.0212 0.0454 20.20 0.0015
0.90 15.01 0.0033 0.0154 16.65 0.0008
1.0 11.26 0.0011 0.0030 13.14 0.0004
1.10 11.59 0.0011 0.0153 11.38 0.0003
1.20 13.20 0.0009 0.0937 11.77 0.0003
1.25 14.03 0.0006 0.1888 12.12 0.0003

Table 1: Comparison of the approximated implied volatilities σimp,LV and σimp,SLV for values
m1 = 400, m2 = 200, ∆τ = 1/200, θ = 1

2 + 1
6

√
3, Q = 2.

solution is available and one relies on numerical methods in order to approximate the exact solu-
tion. Here, we introduce a finite volume - alternating direction implicit method for the numerical
solution of general one-dimensional and two-dimensional forward Kolmogorov equations. The fi-
nite volume spatial discretization does not require a transformation of the PDE, which constitutes
a main advantage in the calibration of SLV models, and handles the boundary conditions in a
natural way. Moreover, the finite volume scheme preserves the crucial property that total mass
of a density function is always equal to one. Our numerical experiments for relevant practical
applications confirm that the pertinent spatial discretization is convergent. Temporal discretiza-
tion is performed by using the Hundsdorfer–Verwer ADI scheme. By splitting the semidiscrete
system into different parts that represent spatial derivatives in the different spatial dimensions,
and by handling spatial derivatives in only one spatial dimension in the implicit substeps, a ma-
jor computational advantage can be achieved. The non-linearity in the calibration procedure of
stochastic local volatility models is handled by introducing an inner iteration. Our numerical ex-
periments reveal that the proposed calibration procedure performs well. The calibrated stochastic
local volatility model matches the underlying local volatility model almost exactly, both in terms
of the density function and of the implied volatilities of European call options.
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