Adjoint Algorithmic Differentiation Tool Support for Typical
Numerical Patterns in Computational Finance

Uwe Naumann® and Jacques du Toit

RWTH Aachen University, Germany and
Numerical Algorithms Group (NAG) Ltd., UK

Abstract

We demonstrate the flexibility and ease of use of C++ algorithmic differentiation (AD)
tools based on overloading to numerical patterns (kernels) arising in computational finance.
While adjoint methods and AD have been known in the finance literature for some time, there
are few tools capable of handling and integrating with the C++ codes found in production.
Adjoint methods are also known to be very powerful but to potentially have infeasible memory
requirements. We present several techniques for dealing with this problem and demonstrate
them on numerical kernels which occur frequently in finance. We build the discussion around
our own AD tool dco/c++ which is designed to handle arbitrary C++4 codes and to be highly
flexible, however the sketched concepts can certainly be transferred to other AD solutions
including in-house tools. An archive of the source code for the numerical kernels as well as all
the AD solutions discussed can be downloaded from an accompanying website. This includes
documentation for the code and dco/c++. Trial licences for dco/c++ are available from NAG.

1 Introduction and Motivation

Ever since the work of Black, Scholes and Merton, the pricing and risk management of contingent
claims have been closely tied to the calculation of mathematical derivatives. To hedge a claim in
the complete market framework it is sufficient to know the derivative of the price with respect
to the underlying, and consequently among quantitative finance practitioners the term “risk” has
become more or less synonymous with differentiation.

Unfortunately the vast majority of financial problems do not admit closed form solutions.
Often all we have is a computer program which calculates an approximate solution. Obtaining
mathematical derivatives becomes impossible and we have to resort to numerical techniques, the
simplest (and most popular) of which is finite differences. The problem is that finite differencing
is often computationally expensive (for large gradients), and for higher derivatives it can become
arbitrarily inaccurate.

Algorithmic differentiation (AD) [Griewank and Walter, 2008, Naumann, 2012] is a numer-
ical technique which gives exact mathematical derivatives of a given computer program. No
approximations are made: the given computer program is differentiated exactly, to any order,
and to machine accuracy. In addition adjoint AD (AAD) can compute gradients at a compu-
tational cost which is independent of the size of the gradient, and is typically within a (small)
constant factor of the cost of running the original program. For this reason AD (and AAD in
particular) has generated considerable interest in many areas of Computational Science and En-
gineering; see, for example, the proceedings of the last three international conferences on AD
[Bischof et al., 2008, Biicker et al., 2005, Forth et al., 2012]. The main problem with AAD is that

*corresponding author; E-mail: naumann@stce.rwth-aachen.de

it typically requires huge amounts of memory unless some care is taken. A large part of this paper
is therefore devoted to discussing techniques for reducing this memory requirement.

Although AD has been known in the finance community for some time now [Giles and Glasserman, 2006,
Capriotti, 2011], adoption has been relatively slow. The most common reasons that finance prac-
titioners cite for this are

(i) unfamiliarity with the method,
(ii) inability to implement AD “by hand” across a large code base,

)

)
(iii) fears of running out of memory when doing adjoint AD,
(iv) uncertainty on how to apply AD to a particular financial problem.
The aim of this paper is to address these issues. The most serious objection raised is (ii). Doing
AD by hand on any production size code is simply not feasible and is incompatible with modern
software engineering strategies. For production code one has to use software tools. These tools are
distinguished by how easy they are to use, which languages and language features they support,
how flexible they are, and how efficient the resulting derivative code is. The tool we propose
is dco/c++ (derivative computation by overloading) developed at RWTH Aachen University in
collaboration with NAG. dco/c++ has been applied successfully to industrial C/C++ codes num-
bering in the millions of lines and is easy to use, efficient and highly flexible. We will give a fuller
description of dco/c++ later on.

Our approach to (iv) above has been to identify several common “numerical patterns” (com-
putational kernels) which appear frequently in financial codes and which in some sense are basic
building blocks: evolutions (sequential loops), ensembles (parallel loops), linear solvers, root find-
ers and optimization. This paper addresses the first two kernels, leaving the last three to a
subsequent publication. Around these first two kernels we have written small financial applica-
tions (test applications) to place the kernels in their proper context, and we apply AD to these test
applications. We demonstrate various strategies which exploit particular features of the kernels
to reduce the memory requirements and/or computational cost.

As will be clear from our discussion, AD is essentially a transformation of source code. The
source for the entire application therefore has to be available. This is a problem for codes which
depend on closed source third party libraries. In Section 6 below we briefly address various topics
arising from our discussion, including options for handling closed source libraries within the context
of dco/c++.

An archive of all the source code for these test applications and the AD strategies we have
applied is available from

http://www.nag.com/adtoolsforfinance/sourcematerials

The code is documented (including documentation for dco/c++) and its structure closely follows
the mathematical presentation in this paper. Readers can study the code to see the details of
implementing the AD strategies we discuss, and can also use the trial copy of dco/c++ included
in the archive on their own codes. Trial licences for dco/c++ can be obtained from NAG via the
download link.

2 AD in a Nutshell

AD is a semantic transformation' of a given computer code called the primal code or primal
function: in addition to computing the primal function value, the transformed code also computes
the derivatives of the primal function with respect to a specified set of parameters.

1.e. changes the meaning

Consider a computer implementation of a function F mapping IR"*" into IR™T™. We assume
that we are interested in derivatives of the first m outputs of F' (the active outputs) with respect
to the first n inputs (the active inputs). The second m outputs and the second 7 inputs of F' are
termed the passive outputs and passive inputs respectively. For example, an active output may be
the Monte Carlo price of an option while a passive output may be the corresponding confidence
interval (see Section 3). An active input may be the initial asset price Sy, while a passive input
may be the set of random numbers used in the Monte Carlo simulation.

Without loss of generality and to keep the notation simple, we restrict the discussion to scalar
active outputs i.e. m = 1.2 We therefore consider multivariate functions of the type

FSBnXRﬁ*)]RX-ZRma (y,y):F(Xai)a (]‘)

where we assume that F' and its computer implementation are differentiable up to the required
order 3. We are interested in (semi-)automatic ways to generate the vector of all partial derivatives
of the active output y with respect to the active inputs x, that is the gradient

VF = VF(x,%) = (5;’) e R", 2)
i/ i=0,...n—1

along with the values of all active and passive outputs as functions of the active and passive inputs.
Similarly, we look for the Hessian of all second partial derivatives of y with respect to x

2
V2F = V2F(x,%) = (oy > e R™". (3)
Ox;0x; 3,i=0,...,n—1

2.1 Tangent Mode AD

In the following we use the notation from [Naumann, 2012]. Forward (also: tangent) mode AD
yields a tangent version F(") : IR™ x IR™ x IR* — IR x IR x IR™ of the primal function F. The
tangent code is a function (y,y™",y) := FM(x,x(, %) where

yM = VEx,x)T - xW (4)

is the directional derivative of F in the direction x(!). We use superscripts (V) to denote first-order
tangents. The operator := represents the assignment of imperative programming languages, not
to be confused with equality = in the mathematical sense. The entire gradient can be calculated
entry by entry with n runs of the tangent code through a process known as seeding and harvesting:
the vector x(!) in (4) is successively set equal to each of the Cartesian basis vectors in IR™ (it is
seeded), the tangent code is run and the corresponding gradient entry is harvested from y(). The
gradient is computed with machine accuracy while the computational cost is O(n) - Cost(F), the
same as that of a finite difference approximation.

2.2 Adjoint Mode AD

Reverse (also: adjoint) mode AD yields an adjoint version

Fay:R"x R" x IR" x R — R x R™ x R" x IR

2The modifications for m > 1 are straightforward.

3Differentiability is a crucial prerequisite for (algorithmic) differentiation. Non-differentiability at selected points
can be handled by smoothing techniques as well as by combinations of AD with local finite difference approximations.
A detailed discussion of these issues is beyond the scope of this article. Its results remain valid under the presence
of points of non-differentiability despite the fact that generalized derivative information needs to be dealt with.
Refer to [Griewank, 2013] for recent work on extensions of AD to non differentiable numerical simulation code.

of the primal function F. The adjoint code is a function (y,¥y,x%1),y(1)) = F1)(X,X(1),%,¥(1))
where

X(l) = X(l) + vﬁF(X7)~()T .

Ya)
. 5
Yy i= 0 (5)

The adjoint code therefore increments given adjoints x(1) of the active inputs with the product of
the gradient and a given adjoint y(;) of the active output. The adjoint output is reset to zero in
order to ensure correct incrementation of adjoints of previously used (in the primal code) values
which are represented by the same program variable y. See [Naumann, 2012] for details. We use
subscripts (1) to denote first-order adjoints. Initializing (seeding) x(1) = 0 and y) = 1 yields
the gradient in x(;) from a single run of the adjoint code. Again, the gradient is computed with
machine accuracy. The computational cost no longer depends on the size of the gradient n.

2.3 Second Derivatives

The second derivative is the first derivative of the first derivative. Second derivative code can
therefore be obtained by any of the four combinations of forward and reverse modes. In forward-
over-forward mode AD forward mode is applied to the tangent code from Section 2.1 above. The
resulting model has three vectors that are seeded, and the full Hessian can be harvested from
n? runs of the second-order tangent code. The computational cost is of the same order as that
of a second-order finite difference approximation. Obviously, the accuracy of the latter is typi-
cally far from satisfactory, particularly for calculations performed in single precision floating-point
arithmetic. For further details of forward-over-forward mode AD we refer to [Naumann, 2012].

Symmetry of the Hessian implies mathematical equivalence of the three remaining second-
order adjoint modes: see [Naumann, 2012] for details. We therefore only consider one of them.
In forward-over-reverse mode AD forward mode is applied to the adjoint code from Section 2.2
above, yielding a second-order adjoint version of the primal code. The model has 4 inputs that
are seeded and yields the full Hessian in n runs of the second-order adjoint code. The reduction
in computational complexity due to the initial application of adjoint mode to the primal code
is therefore carried over to the second-order adjoint. Sparsity of the Hessian can and should
be exploited [Gebremedhin et al., 2005]. Lastly, we note that a Hessian-vector product can be
computed in one run of the second-order adjoint code. This can be of interest if the Hessian is
known to be strongly diagonally dominant and only the diagonal is desired.

2.4 Higher Derivatives

Higher-order AD codes can be built by recursively applying tangent or adjoint modes to the primal
code to build up the derivative calculation. For further details see [Naumann, 2012].

2.5 [Efficiency and Memory Requirements

The efficiency (or cost) of AD codes is usually measured as the ratio

_ Runtime of given AD code

Runtime of primal code (6)
For first order adjoint AD the ratio R typically ranges between 1 and 100 depending on mathe-
matical and structural properties of the primal code and how well these are exploited within the
given AD solution. Compared to forward mode AD or finite differences, R gives an indication of
how large the gradient must be before adjoint methods become attractive. For dco/c++ this ratio
is usually less than 15 and often less than 10, making adjoint methods interesting even for small
gradients.

The main complication in adjoint AD is that the primal code effectively has to be run back-
wards. A full exposition of this fact is given in [Naumann, 2012] and is beyond the scope of this
article. Running the primal code backwards means that certain intermediate values computed by
the primal code must be made available in reverse order (data flow reversal). This can rapidly
result in excessive memory requirements for all but very simple numerical simulations.

Moreover, AD implementations based on operator overloading techniques (such as dco/c++)
amplify this problem since they need to store and recover at runtime an image of the entire com-
putation (commonly referred to as the tape) in order to ensure the correctness of the calculation.
The tape is generated and populated when the adjoint code is run forward, and the tape is then
interpreted (played back) to reverse the data flow and compute the adjoint. Consequently, adjoint
code (and especially tape-based adjoint code) exhibits a possibly infeasible memory requirement
to be dealt with when applying AD in practice. We will see how dco/c++ deals with these issues
in Section 4.1 below.

3 Numerical Patterns and Test Applications

The numerical patterns we address in this paper are ensembles (parallel loops) in the context of
Monte Carlo simulation and evolutions (sequential loops) in the context of solvers for parabolic
PDEs. The symbolic differentiation of direct solvers of linear systems and of iterative root find-
ers and optimizers in the context of AD implementation using dco/c++ will be dealt with in a
subsequent publication.

To illustrate how to approach these numerical patterns from an AD perspective we have
implemented two solutions to a simple pricing problem. A related discussion is presented in
[W. Xu, 2014]. The distinguishing feature of our work is the support of the formal techniques by
a ready to use software tool and publication of a reference implementation.

3.1 Monte Carlo Pricing

Monte Carlo needs no introduction. From the point of view of AD, and in particular when
computing adjoints, Monte Carlo methods can lead to problems since the memory requirements
scale more or less linearly with the number of sample paths. It is important to be able to control
the memory use without affecting performance.

As a test application we consider a simple European call option written on an underlying driven
by a local volatility process. Let S = (S¢):>0 be the solution to the SDE

dS, = 18y dt + o (1og(8,),t) Sy AW, (™)

where W = (W});>0 is a standard Brownian motion, » > 0 is the risk free interest rate and o is
the local volatility function. The price of the call option is then given by

V=e"TE(Sy — K)* (8)

for maturity 7' > 0 and strike K > 0.

In practice o will typically be computed from the market observed implied volatility surface
and is often represented either as a bicubic spline or as a series of one-dimensional splines. While
we could have treated such a case it would have resulted in a slightly more complex test application
than needed. Instead, to keep the code simple, we chose to represent o as

o(x,t) =g(x)-t (9)
where g : IR — IR, is given by a Padé approximation

~ pm(x) agtarrH4 -+ apa™
gn () bo + bix + -+ + bpa™

g9(z)

for p, and g, polynomials of order n and m respectively. The approximation is chosen so that g
is positive and has a reasonable shape over all likely values of z. We wish to note that this choice
of o was motivated simply by a desire to keep the code simple: the AD techniques can handle any
method of representing o.

To compute the call price V from (8) above we apply a simple Euler-Maruyama scheme to the
log process X; = log(S;) which satisfies the SDE

dX; = (r — $0*(X4, 1)) dt + o (X, t) dW;. (11)

Setting A = T'/M for some integer M and defining a sequence of Monte Carlo time steps ¢; = iA
fori=1,2,..., M, we set

Xivoy = Xo, + (r = L0 (Xp 1)) A + 0(Xy, t:)VAZ; (12)

where each Z; is a standard normal random number and X;, = log(Sp). N sample paths of the
log process are generated and used in a Monte Carlo integral of (8) to estimate the price V and to
obtain a confidence interval. We use AD to compute sensitivities of V' with respect to the input
parameters K,T,r, So,aq,...,a, and by, ...,b,. By varying the order of the Padé approximation
we can easily add more input parameters to the model.

3.2 PDE Methods

PDE methods are often preferred over Monte Carlo where tractability permits. The core of any
parabolic PDE solver is a time marching evolution of “state”, namely the value of the solution
at that point in time. Moving from one time step to the next typically involves solving a linear
system, for example in implicit or mixed (eg, Crank-Nicholson) methods.

From the point of view of adjoint AD this time marching evolution of state can be prob-
lematic since the memory requirements for the state scale more or less linearly with the num-
ber of time steps. We therefore need to constrain this memory use. In addition, approaching
the linear solver in a naive way (this will be clarified later) will lead to memory and computa-
tional requirements for the solver that are O(n?). By exploiting the structure of the solver we
can reduce both these to O(n?), which for large dense systems can be a dramatic improvement.
Although our stiffness matrix will end up being tridiagonal, we note that large dense matrices of-
ten arise in partial integro-differential equations (PIDEs) associated with discontinuous processes
(see, eg, [Cont and Tankov, 2004, Matache et al., 2004]). Dense linear systems also feature in
other areas such as computing nearest correlation matrices (see, eg, [Borsdorf and Higham, 2010,
Qi and Sun, 2006]) or in non-linear optimization. It is therefore useful to know how to handle the
linear solver correctly.

Our test application consists of solving the same problem described in Section 3.1 above using
a Crank-Nicholson scheme. In particular, we take the SDE (12) where o is given by (9) and (10)
and consider the pricing problem (8). To recast the pricing problem in a PDE setting we extend
the value V into a value function V' : IR x [0,T] — IR given by

+

V(z,t)=e "TIE, (e - K) (13)

where P, ; is the measure under which the Markov process X starts at time ¢ € [0,7] at the value
z € IR, and E,; denotes expectation with respect to P, ;. Standard results from the theory of
Markov processes then show that V satisfies the parabolic PDE

_29 12 9
0= aV(z,t) + (r—3o (x,t))%V(w,t) (14)
2
+ %az(x,t)%‘/(x,t) —rV(x,t) for (z,t) € R x[0,T),
(" —K)" =V(z,T) forallzéelR. (15)

To these we add the asymptotic boundary conditions

lim V(z,t)=0 forall¢e]l0,T], (16)
r——00

lim V(z,t) =e "IV (e* — K) forall t €[0,T]. (17)
T—00

The system is solved by a Crank-Nicholson scheme as described in [Andersen and Brotherton-Ratcliffe, 2000].
We use AD to compute the same sensitivities as before.

4 AAD by Overloading in C++

Ideally AD should be implemented by source transformation, thus gaining full access to static pro-
gram analysis and optimizing compiler technology. Source transformation by hand turns out to be
tedious and highly error-prone for all but the simplest codes. Unfortunately, the source transfor-
mation tool support for C++ is still very rudimentary. Existing tools [Hascoét and Pascual, 2013,
Schmitz et al., 2011, Vofibeck et al., 2008] deliver satisfactory results for codes written in (a subset
of) C, however they fail to handle nontrivial C++ programs. Operator overloading combined with
meta-programming techniques represent a useful alternative since they allow AD to be applied to
any C++ code. If an overloading AD tool for C++ is to be considered state of the art, it should
have the following features:

e It should provide first- and higher-order tangents and adjoints by instantiating a generic
(templated) primal code with corresponding derivative types. Optimizations applied to
the primal or derivative code of some order should be generically reusable by higher-order
derivative code. For example, by switching the base type (see also Section 4.2) of an optimized
first-order adjoint (perhaps featuring optimized checkpointing schemes and/or symbolically
differentiated kernels) from a floating-point data type to a first-order derivative type, an
efficient second-order adjoint code should be obtained.

e The cost R from (6) of a first-order adjoint code should be minimal — ideally less than
10 if the tape fits entirely into main memory. An aggressively optimized primal code will
make this goal harder to achieve than a suboptimal one. This should be taken into account
whenever looking at run time reports for adjoints. In any case, such reports are of limited
use unless R is stated.

e The memory requirement of the tape generated by first-order adjoint code should be mini-
mal. Ideally, the recorded data is limited to the essential items while low-cost compression
techniques and cache optimized data layouts are employed.

One could argue that these issues have always been on the agenda of the various academic AD
tool development efforts. Nevertheless the performance (both run time and memory requirement
in adjoint mode) of different overloading tools varies significantly. Numerous in-house experiments
as well as comparisons run by others indicate that dco/c++ is more than just competitive, often
exhibiting the lowest run time and the smallest tape size. However we would like to empha-
sise two additional issues which we found to be significantly more important when working with
practitioners in computational finance:

1. Adjoints of nontrivial simulation codes are rarely obtained in a fully automatic fashion.
Checkpointing, user-defined adjoints and other advanced techniques (discussed below) re-
quire flexible and intuitive access to the internal data generated by the AD tool. Absence
of such access is likely to restrict the use of the tool to small and mid-sized primal codes. A
complete quantitative finance library will probably not be a feasible target code.

2. It is crucial that a derivative code can be maintained easily. For this reason it is highly desir-
able to integrate the AD tool fully into the (complex) software platform already in use, since
this greatly simplifies development, maintenance and deployment. Such deep integration
requires the AD tool to have state of the art software engineering methodology, thorough
testing, systematic bug tracking and elimination, version management and professional sup-
port. Adopting adjoint AD as a central component in a software development agenda will
necessarily increase the overall complexity of the code base, however as far as possible this
should be kept to a minimum.

dco/c++ has been developed with these issues in mind. It has been used efficiently in distributed
and shared memory parallel settings [Schanen et al., 2012], has been coupled with accelerators
(GPUs) [Du Toit et al., 2014], and is actively used by a number of Tier-1 investment banks as
well as several other industry sectors (including automotive and aerospace).

4.1 Introducing dco/c++

dco/c++ is an operator overloading AD tool. In Section 2.5 we discussed a number of challenges
that such tools face (the main being memory requirements), and we now take a closer look at how
dco/c++ deals with them. When used in adjoint mode, dco/c++ must store a representation of
the primal calculation to the tape at runtime. Execution of a generic (templated) primal code
instantiated with the first order adjoint dco/c++ data type increases the run time by a factor of
up to 2 even if no tape is recorded. Recording of the tape into main memory adds another factor
of 2 to 6 depending on the structure of the primal code*. By default the tape is a dynamically
growing structure with chunks of memory allocated as needed, but there are options for statically
sized tapes as well (which requires knowing how big the tape must be). Interpretation of the tape
is typically very efficient adding another factor of < 1.5 due to the cache optimized data layout.
On today’s CPU-based workstations the run time overhead R induced by a first order adjoint code
generated with dco/c++ can typically be expected to lie between 5 and 15 if the tape fits into main
memory. If the size of the tape exceeds the available main memory, which will most often be the
case in practice, then additional measures need to be taken possibly resulting in a further increase
or reduction of R. Possibilities include checkpointing techniques for evolutions (sequential loops)
and ensembles (parallel loops), as well as symbolically differentiated numerical kernels (eg, solvers
for linear systems). These techniques are discussed below and we show how they can be integrated
into dco/c++’s tape-based adjoint computation. The key enabling feature for all these advanced
approaches is user defined adjoint functions which are discussed in Section 4.3. Further methods
for improving efficiency and scalability of adjoint code generated with dco/c++ include parallel
recording of tapes, use of accelerators (eg, GPUs), and advanced pre-accumulation techniques.
Some of these topics are briefly introduced in Section 6, however a full discussion is beyond the
scope of this article.

4.2 Using dco/c++

We illustrate basic use of dco/c++ with reference to the pricing problem from Section 3.1. The code
accompanying this paper which solves the pricing problem has the same structure as presented
below.

Suppose there are generic (templated) data types for active inputs and outputs, and regular
(non-templated) data types for passive inputs and outputs:

4dco/c++’s assignment-level compression algorithm makes the recording cost depend on the length of a right-hand
side of an assignment.

0~ O UL W N

N O U W N

0~ O UL W

template<typename ATYPE>

struct ACTIVEINPUTS ({
ATYPE SO,r ,K,T;
LocalVolSurface<ATYPE> sigmaSq;

}s

template<typename ATYPE>

struct ACTIVE.OUTPUTS {

ATYPE V;

b

struct PASSIVEINPUTS {
int NM;
double rngseed [6];

b

struct PASSIVE.OUTPUTS {
double ci;

};

LocalVolSurface is a generic type representing the local volatility surface and contains the param-
eters of the Padé approximation (10), while V is the Monte Carlo option price and ci is half the
width of the confidence interval. Suppose there is a generic (templated) primal function

template<typename ATYPE>

void price(
const ACTIVEINPUTS<ATYPE> &X,
const PASSIVE_INPUTS &XP,
ACTIVE OUTPUTS<ATYPE> &Y,
PASSIVE.OUTPUTS &YP
)

mapping inputs XP and X to outputs YP and Y.

4.2.1 First-order tangent mode

To enable tangent first-order AD the active input and output types are instantiated with the
dco/c++ first-order tangent data type dco::gtls<double>::type over base type double. The user
then seeds and harvests the first-order tangent code, as is shown in the following code listing which
computes dV/9Sy and 9V /0r:

#include ”dco.hpp”
typedef dco:: gtls<double> DCOMODE;
typedef DCOMODE:: type DCO.TYPE;

ACTIVEINPUTS<DCO.TYPE> X;
PASSIVE_INPUTS XP;
ACTIVE_.OUTPUTS<DCO_TYPE> Y
PASSIVE.OUTPUTS YP;

dco::derivative (X.S0)=1;

price (X,XP,Y,YP);

cout << "Y=" << dco::value(Y.V) << endl;

cout << 7dY/dX.S0=" << dco::derivative(Y.V) << endl;

dco::derivative (X.S0)=0;
dco::derivative (X.r)=1;
price (X,XP,Y,YP);

cout << 7dY/dX.r=" << dco::derivative (Y.V) << endl;

0~ O UL ix W N -

DR KNDNDNDNDN DN = = s e e e
NN OO U R WN - O OO O Utk W —=O©

28

Calling dco:: derivative in line 10 is equivalent to setting x(!) in (4) to the Cartesian basis vector
corresponding to 9V/9Sy. The option value is obtained in line 12 and the derivative value in line
13. Lines 15-16 seed x(*) with the Cartesian basis vector for 9V/dr. The primal code has to be
run again before the derivative can be harvested in line 18.

4.2.2 First-order adjoint mode

First-order adjoint mode uses the same generic data types and primal function described above.
The tape as well as the active data types are instantiated with the dco/c++ first-order adjoint type
dco::gals<double>:type. All the active variables are then registered with the tape (lines 13-15)
and the primal code is run to populate the tape (line 17).

#include ”dco.hpp”

typedef dco:: gals<double> DCOMODE;

typedef DCOMODE: : type DCO.TYPE;

typedef DCOMODE:: tape_t DCO_TAPE.TYPE;

DCO_TAPE.TYPEx & DCO_TAPEPOINTER-DCOMODE:: global_tape;

ACTIVE_INPUTS<DCO.TYPE> X;
PASSIVE_INPUTS XP;
ACTIVE.OUTPUTS<DCO_TYPE> Y;
PASSIVE_ OUTPUTS YP;

DCO_TAPEPOINTER = DCO_TAPE.TYPE:: create () ;
DCO_TAPE POINTER—>register_variable (X.S0);
DCO_-TAPEPOINTER—>register_variable (X.r);

price (X,XP,Y,YP);

DCO_TAPE POINTER—>register_output_variable (Y.V);
dco::derivative (Y.V)=1;
DCO.TAPE POINTER—>interpret_adjoint () ;

cout << "Y=" << dco::value(Y.V) << endl;
cout << 7dY/dX.S0=" << dco::derivative (X.S0) << endl;
cout << 7dY/dX.r=" << dco::derivative (X.r) << endl;

DCO_TAPE.TYPE: : remove (DCO_TAPE_POINTER) ;

Y.V is marked as the active output in line 19. In line 20 the input adjoint y(;) from (5) is set
equal to 1 before playing the tape back in line 21. The value is printed in line 23 before all the
derivatives are printed in lines 24-26. Note that the full gradient is obtained from one run of the
adjoint code. Lastly memory allocated by the tape is released in line 28.

4.3 User-Defined Adjoints: Mind the Gap (in the Tape)

By default dco/c++ in adjoint mode records intermediate calculations to the tape as the primal
code is run forward, and then runs the calculation backwards when the tape is interpreted. Any
additional information or structure a user wishes to exploit in an adjoint calculation necessarily
has to interfere with this process: the user must stop dco/c++ doing what it would normally
do and instead has to show it how to do something more sophisticated. The result is gaps in
dco/c++’s tape.

10

Conceptually, the following happens. Consider a section ¢ in a primal code

F:(x%) 5) -5 v, 9) 25 1,9). (18)
that a user wishes to treat specially (eg a Monte Carlo loop). The forward run starts by computing
f1 and recording values to the tape. When it reaches g the user must interrupt dco/c++ and must
compute g without storing values to the tape, thereby creating a gap. At the end of this section
control is handed back to dco/c++ which computes f2, populating the tape as normal. This
process is illustrated in Figure 1. Note that the way to “interrupt” dco/c++ when computing g
and avoid recording to the tape is to not use dco/c++ data types. Therefore g must be computed
with standard floating-point data types, denoted by u’ and v’ in Figure 1.

When the tape is interpreted, dco/c++ starts by computing the adjoint of f5. It then reaches
the gap in the tape and calls a user-defined adjoint function which must compute the adjoint of g
using the chain rule of differential calculus. Once this is done the user hands this adjoint back to
dco/c++ which uses this to compute the adjoint of f;, thus completing the interpretation of the
tape.

User-defined adjoint functions are registered with dco/c++ through its external function inter-
face. dco/c++ provides a factory (see [Gamma et al., 1995]) which issues external adjoint objects
(EAOs) that are associated with the tape, thus ensuring C++ exception safety and avoiding mem-
ory leaks. The active inputs u and active outputs v of the function (v,v) = g(u,a) above are
registered with the EAO. Additionally, the passive inputs u and outputs v can also be stored in
the EAQO, along with any other data required for the computation of the gap’s Jacobian Vg = %.

The EAOQ is created and populated during the forward run by the user’s implementation of the
function g, called, eg, g_make_gap. The user-defined adjoint function which fills the gap, called, eg,
g-fill_gap , needs to be registered with the EAO. When the tape is interpreted, dco/c++ begins by
computing the adjoint v(;y of fo. The interpreter then reaches the gap and calls g fill gap which
must compute adjoints u(py 1= ug) + (vv)T. v(1) of the active inputs of g. These are then passed
back to dco/c++ which completes the interpretation of the tape to get x(1) = x(1) + (VF)T Y-

The external function interface is the preferred option for incorporating user knowledge into
a dco/c++ adjoint AD solution. In Section 5 we discuss techniques which arise in the context of
our test applications: exploiting independence in Monte Carlo simulations, and trading memory
for floating-point operations through checkpointing. However, the external function interface
facilitates the implementation of a variety of other targeted approaches to AAD with dco/c++
some of which are briefly discussed in Section 6.

We have not yet addressed how the user fills the gap and computes the adjoint of g in g_fill_gap .
While analytic results (see Section 6), hand-written adjoints or source transformation techniques
are all options, it turns out that one can use dco/c++ itself to fill the gap. This will be discussed
in Section 5 below.

5 Ensembles and Evolutions

We show how dco/c++’s external function interface allows us to reduce the memory footprint of
our test applications substantially. This is done by exploiting particular structural properties in
each application.

We wish to note that the techniques discussed below are not optional refinements: in most
production codes they are absolutely essential in order to get a tape-based adjoint code to run at
all, even on large memory machines.

5.1 Ensembles: Exploiting Independence in Monte Carlo Simulations

We consider the first-order adjoint version of the Monte Carlo application in Section 3.1. Since
the memory requirements of the tape scale more or less linearly with the number of sample paths,

11

g-make_gap

Figure 1: External Function Interface of dco/c++: Subfigure (a) illustrates the tape generation
discussed in Section 4.3. The active part of the computation (marked by solid circles) is taped.
Directed edges are labelled with partial derivatives of outputs w.r.t. inputs (unless zero). Dotted
edges are assignments from the tape into the external function and back, yielding unit partial
derivatives. Subfigure (b) illustrates the tape interpretation discussed in Section 4.3. Active
computations are handled by dco/c++ while g fill gap must fill the gap in the tape.

a naive (automatic) approach to generating adjoint code with dco/c++ rapidly leads to infeasible
peak memory requirements. The general concept of exploiting independence (parallelism) for
generating efficient serial adjoints was discussed in [Hascoét et al., 2002].

A checkpoint is a set of data which is stored (either to disk or to memory) at a point during
a computation, and which allows the computation to be restarted (at some later time) from that
point. A Monte Carlo simulation is typically a function of the form

(u, 1) -5 (v1,V1)

3 3 (u,p) 5 (va,¥2) 3 3 3
F (X,X)A(u,u),) , (vl,...,vN7v1,...,vN)£>(y,y). (19)

(u, le) i> (VN,{IN)

In our context g is the Euler-Maruyama integrator (12) and 4; represents sample-path-specific
passive inputs such as the random numbers (it includes @ from f7). The outputs v; represent the
N sample paths, and f5 is the payoff function.

The explosion in tape size comes from the N evaluations of g. Therefore in the forward run,
the evaluations of ¢ must not record to the tape. The way to do this is to make a checkpoint of the
output (u,) of f; and provide an external function g make_gap which computes g with standard
floating-point data types (eg, double) instead of dco/c++ adjoint types. This effectively creates
a gap in the tape for each evaluation of g. This process is illustrated in Figure 2 (a). Consider
the ith call to the function g-make_gap. It requests an external adjoint object (EAO), registers the
active input u with the EAO and receives it’s value u} which is of type double®. The reason for

5The passive input 1 is also stored in the checkpoint; it is already of type double

12

g-fill_gap

P ~ ~

(1]

oy \ . / N
[ul(l)]¢7777ﬂv1(1) <
\ // av] \ //

S ~

- - 7 - -
ou’y

L .
@ 3] ~ '
O Tl gfill_gap

(1

Figure 2: Illustration of the adjoint ensemble discussed in Section 5.1. Subfigure (a) depicts the
forward (recording) run. The active part of the computation (marked by solid circles) is taped.
Subfigure (b) denotes the adjoint calculation. Edges are labelled with partial derivatives (unless
zero). Dotted edges are assignments from tape to external function and vice versa.

13

the subscript ¢ will become clear when we discuss the reverse pass: for now note that all the uls
are equal to the (passive) value of u. Once g-make_gap has computed g it registers the outputs
(vl,v;) with the EAO which inserts v/ into new dco/c++ adjoint types® v; and registers them
with the tape. Therefore the active outputs v} of g in (19) are of type double, while the active
inputs v; of fy are dco/c++ first-order adjoint types. Consequently f; and f; record values to the
tape while the calls to g don’t.

Note that each call to g_make_gap creates the same checkpoint (u,). Although not necessarily
a problem this is somewhat inefficient. There are obvious ways to improve this, which are done in
the code accompanying this paper.

Interpretation of the tape (illustrated in Figure 2 (b)) for a given input adjoint y(;) starts as
normal. The tape interpreter computes all the adjoints

oy’ oy’
Vi(1) = Vi) + v, “Yay = v, “Y) (20)
for © = 1,..., N where the equality follows since v;(1) is initialized to zero. For each gap in the

tape the interpreter then calls the user defined adjoint function g fill gap which must compute

T T
v/ , \L

U = Uy g Vi) = U g Via) (21)
where the equality follows since v; was created from v/ by assignment. The easiest way to do this
is to use dco/c++ itself. The checkpoint is restored, the value u] is inserted into new dco/c++
first-order adjoint data types u;, and g is computed recording values onto a (conceptually new)
tape. This tape is seeded with the input adjoint v;(;y and is interpreted, yielding a local adjoint

u;(1) which is then added to the running sum u() := u(;) + u;(1). Once this has been done for all

gaps, the interpreter can compute the adjoint x(;) := x(1) + % -uy of fi which completes the
adjoint calculation.

The method described above fills only one gap at a time. Mutual independence of the evalua-
tions of g allows for several gaps to be filled in parallel, which yields a parallel adjoint calculation.
It is also clear that the checkpointing scheme we present trades computation for memory: each
sample path is effectively computed twice in order to complete the adjoint calculation.

Table 1 compares peak memory requirements and elapsed run times for the solutions in mc/als
and mc/als_ensemble for N = 10,000 and M = 360 against central finite differences on our
reference computer with 3GB of main memory available and swapping to disk disabled. The naive
approach (mc/als) without checkpointing yields infeasible memory requirements for gradient sizes
n > 22. Exploiting concurrency in mc/als_ensemble yields adjoints with machine precision at the
expense R < 10 primal function evaluations for all gradient sizes.

Table 2 shows the accuracy of gradient entries computed via finite differences (forward and
central) compared with AD. The first entry (¢ = 0) has the best accuracy, the last entry (i = 4) has
the worst, while the middle entry is representative of the average accuracy of the finite difference
gradients. Figures are for the smallest problem (gradient size n = 10).

5.2 Evolutions: Multiple Checkpoints to Control Memory

An evolution is a serial loop, typically representing some kind of iterative method. In the context of
the parabolic PDE considered in Section 3.2, the iteration arises as the payoff is evolved backwards
in time by iteratively solving systems of linear equations. This can be depicted as

F:(x,%) 15 (u,10) % (g, 1) 5 - -2 (uy, in) 2 (1,) (22)

60nly active outputs are converted to dco/c++ types.

14

n | mc/primal | mc/cfd mc/als mc/als_ensemble | R
10 0.3s 6.1s 1.8s (2GB) 1.3s (1.9MB) 4.3
22 0.4s 15.7s | - (> 3GB) 2.3s (2.2MB) 5.7
34 0.5s 29.0s (> 3GB) 3.0s (2.5MB) 6.0
62 0.7s 80.9s (> 3GB) 5.1s (3.2MB) 7.3
142 1.5s 423.5s (> 3GB) 12.4s (5.1MB) 8.3
222 2.3s 1010.7s (> 3GB) 24.4s (7.1MB) 10.6

Table 1: Run times and peak memory requirements as a function of gradient size n for dco/c++
first-order adjoint code vs. central finite differences for the Monte Carlo kernel from Section 3.1.
Naive first-order adjoints for n > 22 required too much memory to run. The relative computational
cost R is given for mc/als_ensemble. Although theoretically constant, R is sensitive to specifics
such as compiler flags, memory hierarchy and cache sizes, and level of optimization of the primal

code.
7 mc/ffd mc/cfd mc/tls mc/als_ensemble
0 0.982097033091 0.982097084181 0.982097083159485 0.982097083159484
7 1 -0.0716705322265 | -0.071666955947 | -0.0716660568246482 | -0.0716660568246484
4 | 0.346174240112 0.346131324768 0.346126820239318 0.346126820239324

Table 2: Accuracy of selected (ith) forward and central finite difference gradient entries vs. AD
for the Monte Carlo code with scenario n=10. Top row shows best case (rel. err. & le-8), bottom
row worst case (rel. err. &~ 6e-5) while middle row is a representative value (rel. err. & 2e-5). These
finite difference values are rather better than one often observes in practice.

Figure 3: Hlustration of the adjoint evolution discussed in Section 5.2. Line types (solid, dotted)
have the same meanings as before. Subfigure (a) depicts the forward (recording) run and subfig-
ure (b) the adjoint calculation. In general each function g -make_gap could be different, though in
the PDE solver we discuss they are all the same.

15

n | pde/primal | pde/cfd | pde/als | pde/als_checkpointing | R

10 0,3s 6.5s - (> 3GB) 5,2s (2056MB) 17.3
22 0,5s 19.6s - (> 3GB) 8,3s (370MB) 16.6
34 0,6s 37.7s - (> 3GB) 11,6s (535MB) 19.3
62 1,0s 119.5s | - (> 3GB) 18,7s (919MB) 18.7
142 2,6s 741.2s | - (> 3GB) 39s (2GB) 15.0
222 4,1s 1857.3s | - (> 3GB) 60s (3GB) 14.6

Table 3: Run time and peak memory requirements as a function of the gradient size n of the naive
and checkpointed first-order adjoint codes vs. central finite differences. The checkpointing used
is equidistant (every 10th time step). The naive adjoint ran out of memory even for the smallest
problem size. The relative computational cost R is given for pde/als_checkpointing. Again,
this theoretically constant value is typically rather sensitive to specifics of the target computer
architecture and software stack.

where each g represents the solution of a linear system?”. As mentioned before, the tape’s memory
requirements scale more or less linearly with the number of time steps V. The only difference
between an evolution and the ensemble discussed in the previous section is that in the ensemble
each function ¢ started with the same active input u, whereas in (22) the active output of one
iteration becomes the active input of the next iteration. We can therefore apply exactly the same
ideas from the previous section and checkpoint the values (u;,1;) at the start of each iteration
for i = 0,...,N — 1. This is illustrated in Figure 3. Each function g is run passively (ie, not
using dco/c++ data types) so that there is a gap in the tape for each function g. When the tape
is interpreted to compute the adjoint we do the same as before. First the adjoint uy(;) of fo
is computed. Next the checkpoint for (uy_1,0n_1) is restored and inserted into new dco/c++
first-order adjoint types. The last (Nth) iteration is run actively, the tape is seeded with uy (1)
and the adjoint uy_1)(1) is computed. Then the checkpoint for (uy_s,Uy—_2) is restored and the
same is done. This is repeated until the adjoint ug(;) of the payoff is computed, after which the
interpretation of the tape can be completed.

As noted in the previous section, each checkpoint introduces additional computations but
saves memory. If one iteration doesn’t use too much memory, then one can potentially checkpoint
only every 10th or 20th iteration, thereby speeding up the adjoint calculation. Checkpointing
techniques have been investigated extensively in the literature. The problem of minimizing the
adjoint cost by placing checkpoints subject to a given upper bound on the available memory is
known to be NP-complete [Naumann, 2008, Naumann, 2009]. Binomial checkpointing solves this
problem for evolutions where the number of iterations is known in advance [Griewank, 1992].
Parallel approaches have been developed in order to exploit concurrency in the re-evaluation of
parts of the computation from the stored checkpoints [Lehmann and Walther, 2002].

The sample code in pde/als_checkpointing/ illustrates the use of the external function in-
terface for implementing an equidistant checkpointing scheme for adjoint first-order AD. Table 3
compares peak memory requirements and elapsed run times for the solutions in pde/als and
pde/als_checkpointing for N = 10,000 spatial grid points and M = 360 time steps on our
reference computer with 3GB of main memory available and swapping to disk disabled. The
naive (automatic) approach (pde/als) with no checkpointing yields infeasible memory require-
ments for all gradients of size n > 10. Equidistant checkpointing of every tenth time step in
pde/als_checkpointing yields adjoints with machine precision at the expense of R ~ 15 primal
function evaluations. Implementing an optimal (binomial) checkpointing scheme, such as given by
revolve [Griewank and Walther, 2000], can be expected to give further improvements.

The accuracy of finite differences compared with AD values is more or less the same as those

"In the general case each g in (22) could be a different function g;, however for simplicity we have presented the
case corresponding to Crank—Nicholson solver used in Section 3.2.

16

shown in Table 2.

6 Further Topics

We close with a brief discussion of some further topics which are applicable to AD in general or to
dco/c++ in particular. Their in-depth coverage in the context of AD solutions based on dco/c++
will be the subject of upcoming publications.

6.1 Domain-Specific Adjoint AD Intrinsics

As we have seen, dco/c++’s external function interface allows one to define a mapping between
a primal function and a user-defined adjoint function. This allows one to provide sets of highly
optimized adjoint versions (featuring, eg, hand-written code or manually optimized output from
an AAD source transformation tool) of functions that can be considered as the state of the art in
a given field. For this to work well, the primal implementations of these functions would need to
remain stable over the medium to long term so that the overheads of development, optimization
and testing pay off due to frequent reuse. Entire libraries of user-defined dco/c++ intrinsics are
built in practice supporting a highly modular software engineering approach to adjoint sensitivity
analysis and optimization.

6.2 Local Bumping and Closed Source Library Dependencies

Discontinuous and/or non-differentiable functions do occur in several financial settings. By defi-
nition, these functions cannot be differentiated in any classical sense of the term. Local bumping
(finite differences) may be an option for obtaining some form of generalized / globalized sensitivity
information for such functions. While this approach would no longer fit into the category of accu-
rate differentiation, such generalized sensitivity information can still be integrated into an exact
adjoint through user-defined adjoint functions as discussed above. It is up to the user to ensure
that this “mix” makes some mathematical sense. An alternative approach to discontinuities/non-
smoothness can be based on smoothing. The resulting continuously differentiable approximation
of the primal model can then be differentiated with dco/c++.

Local bumping also allows a way to deal with closed source library dependencies. It is clear that
for AD to work in general, the entire source code including any dependencies must be available.
When parts of the source are closed, these functions can still be handled by local bumping.
The NAG Library® is currently the only commercial maths library which is fully integrated with
dco/c++. This means that dco/c++ treats a growing set of functions in the NAG Library as
intrinsic and can compute exact tangents and adjoints for them. Programs which use NAG
components can therefore be handled as if the entire source code were available.

6.3 (Direct) Linear Solvers

The key to reducing the computational and memory requirements of direct linear solvers
A-s=b (23)

is to consider the linear system mathematically and then derive the analytic adjoint symbolically.
Consider this system as a function of some auxiliary scalar input variable z € IR (generalization to

the multivariate case turns out to be straight forward). Differentiating (23) gives %—’;‘-S—FA% = %.
Denoting s(t) = g—z we obtain (see, for example, [Giles, 2008])
A-sW =p® _ 4™ .4 (24)

8 Available from www.nag.co.uk

17

where AW = 24 and b)) = 2P are the (input) partial derivatives of A and b with respect to z.
Therefore in tangent mode AD the derivative of the solution s w.r.t. z can be obtained by solving
(24) where AM and b(") must already be available (obtained, eg, by application of dco/c++ in
first-order tangent mode to A = A(z) and b = b(z)).

Similar arguments can be used [Giles, 2008, Naumann and Lotz, 2012] to show that the adjoint

projections A(;y and by for a given input adjoint s(;) in (23) satisfy

AT~b(1) = S(l) (25)
Agy = —bu-s"

where the input adjoint must be available (eg, by application of dco/c++ in first-order adjoint
mode to the computation of f = f(s) following the solution of the linear system in the primal
code). There are two things to note from these results:

e There are analytic formulae (24) and (25) for the tangents s(!) and adjoints Ay and b(;) of
the linear system (23), so there is no need to use AD to compute these.

e The factorization of A computed by the primal solver can be reused in (24) and (25) for the
solution of the equations.

The computational cost of the derivative calculation can thus be reduced significantly, eg, from
O(n?) to O(n?) for a dense system, since the derivatives can be computed with matrix-vector
products. For the adjoint calculation a similar statement applies to the memory requirements of
the tape: if AD were used to compute the adjoint of (23), then O(n?) values would need to be
stored to the tape. Now all that is needed is to store the factorization of A and the solution vector
s which is O(n?) in size.

Note that the approach above assumes availability of the exact primal solution s of the linear
system. This requirement is unlikely to be satisfied by iterative solutions since a higher accuracy
of the primal solution (ie, s) is needed in order to get the required accuracy of the sensitivities. For
example, converging to 10 or 12 significant digits may be sufficient for a double precision adjoint
calculation, although this would need to be verified in the given application.

The effect of the computational and memory savings in the Crank—Nicholson context of Section
3.2 is rather muted since the matrix A is tridiagonal and hence very sparse. We therefore chose
not to include the implementation of the discussion above in the source code archive since it
gains us nothing in our PDE kernel. However there are many applications in finance where large
dense systems are handled, eg. in PIDEs, nearest correlation matrix calculations and interior point
optimization methods to name but a few.

6.4 Root Finding

Differentiation of the parameterized system of nonlinear equations F(x,A) = 0 at the solution
x = x* with respect to the parameters A\ yields

dF OF oF Jx
a(xa)\) = ﬁ(xa A) + 87x(x’>\) “ax Y
and hence 5 OF OF
ox __9r -1, 97
™ (x,A) N (x,A). (26)
The computation of the directional derivative
Jx oF oF
1 22 @ = 25 -1, 97 A
X X A I (x,A) Y (x,A) - A (27)

18

amounts to the solution of the linear system

oF OF

A o xM = 2 x A - AW 9
the right-hand side of which can be obtained by a single evaluation of the tangent mode of F.
The direct solution of (28) requires the n X n Jacobian ‘g—i(x, A) which is preferably computed in

tangent mode so that sparsity can be exploited.

Transposing (26) gives (g—i)T =- (g—f)T : (g—‘:)fT and hence

ox\" OF oF _
A=Ay + (ax) x() = Aw) = 55 (6N ()T xq). (29)
Consequently the adjoint solver needs to solve the linear system
OF
ox
followed by a single call of the adjoint model of F' seeded with the solution z which gives

(x, A7z = —X(1) (30)

F T
ax)

The approach outlined above assumes availability of the exact primal solution of the nonlinear
system. Again, a higher accuracy of the primal is necessary in order to get the desired accuracy
of the adjoint.

Aa) =Aw) + 5y

6.5 Optimization

An unconstrained optlmlzatlon problem can be regarded as root ﬁndlng for the first-order opti-
mality condition z 9 F(x,\) = 0. Differentiating at the solution x = x* with respect to X\ gives

0 OF 0?F 0?F ox

X ax N = o A+ 5 2(X A) - 8)\(X A) =
so that we obtain 5 92 92
X -1
. . 1
AN =~ AT G 6N (31
As before, computing the directional derivative x(1) = g—i AN amounts to solving a linear system
0*F 0*F
(1) — B, 2
ST N X = S () A (32)

the right-hand side of which can be obtained by a single evaluation of the second-order adjoint
2

version of F'. The direct solution of (32) requires the n x n Hessian %(x,), which is preferably

computed with second-order adjoint AD while exploiting potential sparsity.

2 2 =T
Transposing (31) gives (g—i)T =— (aa,\gx) . (g)f;) yielding the first-order adjoint model

ox 0*F T 0?F _r
Aq) =Aw) + 8)\(X AT X(1) = Aq) — W(Xv A) oxZ (3, A)77 - x)-
T
Computing A1) amounts to solving the linear system ?)XI; -z = —X(1) followed by a single call of

the second-order adjoint model of F' at the solution z to obtain
2

OAOx
See [Henrard, 2014] for a discussion of this method in the context of calibration. Generalizations
for constrained optimization problems can be derived naturally, eg, by treating the KKT? system
according to Section 6.4.

)\(1) = >\(1) (X A)

9Karush-Kuhn—Tucker

19

n | mc/socfd | mc/t2s_tls | mc/t2s_als | mc/t2s_als_ensemble
10 6s 4s 2s (316MB) 2s (0.5MB)

22 35s 23s 8s (778MB) 8s (1.0MB)

34 98s 66s 18s (1.2GB) 18s (1.5MB)

62 8min 5.3min 62s (2.3GB) 53s (2.5MB)

142 2.4hrs 52min - (> 3GB) 5.3min (5.7MB)
222 6.1hrs 3.2hrs - (> 3GB) 13.8min (8.7MB)

Table 4: Run time and peak memory requirements as a function of gradient size n for computing
the entire Hessian of the Monte Carlo code. Second order central differences are compared with
forward AD, naive adjoint-based AD and a checkpointed adjoint code. Only N = 1000 sample
paths were used to keep finite difference run times manageable.

6.6 Pre-Accumulation of Local Jacobian

Consider the adjoint calculation of a function

F:(x,%) 5 (wa) -5 (v,9) 22 (1,3) (33)

where u € IR"™ and v € IR™ so that the Jacobian Vg € IR"™*™. The maximum m X n memory
needed to store the matrix Vg is often much less than the amount of memory needed to tape g,
especially if g involves a lot of computation. The problem is compounded if a large amount of
memory is also needed to tape fa, leading to the overall tape size potentially exceeding the available
memory. In this case memory can be freed if the Jacobian for g is pre-accumulated locally during
the forward run (using, eg, dco/c++ in adjoint mode, or in tangent mode if n < R - m for R the
adjoint cost) and stored, effectively creating a gap in the tape for g. When the tape is interpreted,
the gap is filled by computing u(;) := u() + (Vg)T - V(1) using the stored matrix.

Consider now the case when the active output of F' is a vector y € IRP. The Jacobian VF is
now a matrix and the adjoint model of F' is x(1) 1= x(1) + (VF)T ¥@)- To compute the entire
Jacobian we seed y(;) with the Cartesian basis vectors in IRP, which means running the tape
interpreter p times, once for each column in the Jacobian. Having the pre-accumulated Jacobian
Vg available avoids having to essentially re-compute it each time the tape interpreter is run,
reducing the computational cost of computing the Jacobian.

7 Conclusion

Adjoint AD is an extremely powerful numerical technique. In order to use it in production C+-+
codes, flexible tools are needed which allow a user sufficient control over the adjoint computation so
that the memory and computational costs can be kept in check. dco/c++ was designed specifically
to allow such control, and this paper (and the accompanying code) presents techniques for control-
ling these costs within the context of computational finance. The tools and techniques presented
here are applicable across financial mathematics: sensitivities for xVA calculations, portfolio op-
timization, calibration, hedge portfolios and more can all be obtained while keeping memory use
within limits.

As mentioned in Section 2 higher derivatives pose no conceptual problem. Recursive instan-
tiation with dco/c++ types yields derivatives of arbitrary orders, memory problems still feature
for methods built on adjoints, and the techniques presented in this paper can be used to control
these. For completeness Table 4 presents run times and memory requirements for computing the
entire Hessian for the Monte Carlo code from Section 3.1.

dco/c++ can also be combined with accelerators such as GPUs!%: see e.g. [Du Toit et al., 2014]
and [Gremse et al., 2014]. dco/c++ in tangent mode has full support for CUDA and can be used

10 Although there is no published work on using dco/c++ with Intel Xeon Phi, dco/c++ supports Intel’s LEO and

20

“out the box.” While dco/c++ in adjoint mode does work on these devices, using it effectively
is more challenging since memory is constrained and memory accesses have to be orchestrated
carefully. In addition race conditions may arise when updating adjoints of shared variables. Tapes
on host and device are in separate memory spaces, and each thread on the device requires its own
tape which often requires more memory than is available. For these reasons, dco/c++ in adjoint
mode is typically not used on the device itself but only on the host portion of the code.

On the device itself there are two main options. The first, as in [Gremse et al., 2014], is to
narrow the focus to a single problem domain, the setting considered there being medical image
reconstruction. Algorithms in this field can frequently be broken down into sequences of linear
algebra operations. These can be differentiated analytically (as in Section 6.3 above) and the
resulting GPU kernels can be incorporated as dco/c++ intrinsics (as in Section 6.1).

Although this leads to device code which is memory bandwidth bound (since kernels are small
and are often matrix-vector operations), this approach works well in the problem domain con-
sidered. It is rather restrictive, however, and does not translate well to computational finance
where many numerical kernels cannot be decomposed easily into sequences of linear algebra op-
erations. Efficient code can be obtained by writing accelerated adjoint kernels by hand as in
[Du Toit et al., 2014], however this is hardly ideal for primal codes which may change frequently.
A source transformation tool (eg, [Hascoét and Pascual, 2013]) could be used provided that the
target code can be handled. The other option involves extending dco/c++’s type system using
C++11 features so that adjoints for blocks of straight-line code'! can be generated at compile time
by the platform C++11 compiler. No writes to the tape are therefore generated for that block of
code. This is a topic of ongoing research and should ease the process of generating efficient adjoint
kernels for accelerators.

8 Acknowledgements

The authors would like to thank a senior quantitative analyst Claudia Yastremiz for many sug-
gestions and helpful discussions which ultimately led to this paper, and to a fuller understanding
of the challenges any AD tool faces when operating on a large bank’s quant library.

References

[Andersen and Brotherton-Ratcliffe, 2000] Andersen, L. B. G. and Brotherton-Ratcliffe, R.
(2000). The equity option volatility smile: an implicit finite difference approach. Journal
of Computational Finance.

[Bischof et al., 2008] Bischof, C., Biicker, M., Hovland, P., Naumann, U., and Utke, J., editors
(2008). Advances in Automatic Differentiation, volume 64 of Lecture Notes in Computational
Science and Engineering. Springer.

[Borsdorf and Higham, 2010] Borsdorf, R. and Higham, N. J. (2010). A preconditioned (Newton)
algorithm for the nearest correlation matrix. IMA Journal of Numerical Analysis 30(1).

[Biicker et al., 2005] Biicker, M., Corliss, G., Hovland, P., Naumann, U., and Norris, B., editors
(2005). Automatic Differentiation: Applications, Theory, and Implementations, volume 50 of
Lecture Notes in Computational Science and Engineering. Springer.

[Capriotti, 2011] Capriotti, L. (2011). Fast greeks by algorithmic differentiation. Journal of Com-
putational Finance, 14(3).

can be used on the Xeon Phi in both tangent and adjoint mode. The general discussion about difficulties with
adjoint calculations applies to this platform as well.
1 Code with no branches or function calls.

21

[Cont and Tankov, 2004] Cont, R. and Tankov, P. (2004). Financial Modelling with Jump Pro-
cesses. Chapman & Hall.

[Du Toit et al., 2014] Du Toit, J., Lotz, J., and Naumann, U. (2014). Algorithmic differentiation
of a gpu accelerated application. NAG Technical Report No. TR2/14.

[Forth et al., 2012] Forth, S., Hovland, P., Phipps, E., Utke, J., and Walther, A., editors (2012).
Recent Advances in Algorithmic Differentiation, volume 87 of Lecture Notes in Computational
Science and Engineering. Springer.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Pat-
terns. Addison-Wesley.

[Gebremedhin et al., 2005] Gebremedhin, A., F., M., and Pothen, A. (2005). What color is your
Jacobian? Graph coloring for computing derivatives. SIAM Review, 47(4):629-705.

[Giles, 2008] Giles, M. (2008). Collected matrix derivative results for forward and reverse mode
algorithmic differentiation. In [Bischof et al., 2008], pages 35-44. Springer.

[Giles and Glasserman, 2006] Giles, M. and Glasserman, P. (2006). Smoking adjoints: Fast Monte
Carlo greeks. Risk, 19:88-92.

[Gremse et al., 2014] Gremse, F., Theek, B., Kunjachan, S., Lederle, W., Pardo, A., Barth, S.,
Lammers, T., Naumann, U., and Kiessling, F. (2014). Absorption reconstruction improves
biodistribution assessment of fluorescent nanoprobes using hybrid fluorescence-mediated to-
mography. Theranostics 4, 960-971.

[Griewank, 1992] Griewank, A. (1992). Achieving logarithmic growth of temporal and spatial
complexity in reverse automatic differentiation. Optimization Methods and Software, 1:35-54.

[Griewank, 2013] Griewank, A. (2013). On stable piecewise linearization and generalized algorith-
mic differentiation. Optimization Methods and Software, 28(6):1139-1178.

[Griewank and Walter, 2008] Griewank, A. and Walter, A. (2008). Evaluating Derivatives. Prin-
ciples and Techniques of Algorithmic Differentiation (2. Edition). SIAM, Philadelphia.

[Griewank and Walther, 2000] Griewank, A. and Walther, A. (2000). Algorithm 799: Revolve:
An implementation of checkpoint for the reverse or adjoint mode of computational differentia-
tion. ACM Transactions on Mathematical Software, 26(1):19-45. Also appeared as Technical
University of Dresden, Technical Report IOKOMO-04-1997.

[Hascoét et al., 2002] Hascoét, L., Fidanova, S., and Held, C. (2002). Adjoining independent
computations. In Corliss, G., Faure, C., Griewank, A., Hascoét, L., and Naumann, U., editors,
Automatic Differentiation of Algorithms: From Simulation to Optimization, Computer and
Information Science, chapter 35, pages 299-304. Springer, New York, NY.

[Hascoét and Pascual, 2013] Hascoét, L. and Pascual, V. (2013). The Tapenade automatic dif-
ferentiation tool: Principles, model, and specification. ACM Transactions on Mathematical
Software, 39(3):20:1-20:43.

[Henrard, 2014] Henrard, M. (2014). Adjoint algorithmic differentiation: calibration and implicit
function theorem. Journal of Computational Finance. To appear.

[Lehmann and Walther, 2002] Lehmann, U. and Walther, A. (2002). The implementation and
testing of time-minimal and resource-optimal parallel reversal schedules. In Sloot, P. M. A,
Tan, C. J. K., Dongarra, J. J., and Hoekstra, A. G., editors, Computational Science —
ICCS 2002, Proceedings of the International Conference on Computational Science, Amster-
dam, The Netherlands, April 21-24, 2002. Part II, volume 2330 of Lecture Notes in Computer
Science, pages 1049-1058, Berlin. Springer.

22

[Matache et al., 2004] Matache, A. M., von Petersdorff, T., and Schwab, C. (2004). Fast deter-
ministic pricing of options on lévy-driven assets. M2AN. Mathematical Modelling and Numerical
Analysis, 38.

[Naumann, 2008] Naumann, U. (2008). Call tree reversal is NP-complete. In [Bischof et al., 2008],
pages 13-22. Springer.

[Naumann, 2009] Naumann, U. (2009). DAG reversal is NP-complete. Journal of Discrete Algo-
rithms, 7:402-410.

[Naumann, 2012] Naumann, U. (2012). The Art of Differentiating Computer Programs. An In-
troduction to Algorithmic Differentiation. Number 24 in Software, Environments, and Tools.
STAM.

[Naumann and Lotz, 2012] Naumann, U. and Lotz, J. (2012). Algorithmic differentiation of nu-
merical methods: Tangent-linear and adjoint direct solvers for systems of linear equations.
Technical Report AIB-2012-10, LuFG Inf. 12, RWTH Aachen.

[Qi and Sun, 2006] Qi, H. and Sun, D. (2006). A quadratically convergent Newton method for
computing the nearest correlation matrix. SIAM Journal of Matriz Analysis and Applications
29(2).

[Schanen et al., 2012] Schanen, M., Foerster, M., Lotz, J., Leppkes, K., and Naumann, U. (2012).
Adjoining hybrid parallel code. In et al., B. T., editor, Proceedings of the Fifth International
Conference on Engineering Computational Technology, pages 1-19. Civil-Comp Press.

[Schmitz et al., 2011] Schmitz, M., Hannemann-Tamas, R., Gendler, B., Forster, M., Marquardt,
W., and Naumann, U. (2011). Software for higher-order sensitivity analysis of parametric DAEs.
SNE, 22(3-4):163-168.

[VoBBbeck et al., 2008] Vofibeck, M., Giering, R., and Kaminski, T. (2008). Development and first
applications of TAC++. In [Bischof et al., 2008], pages 187-197. Springer.

[W. Xu, 2014] W. Xu, X. Chen, T. C. (2014). The efficient application of automatic differentiation
for computing gradients in financial applications. Journal of Computational Finance. To appear.

23

