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Random fields are families of random variables, indexed by a d-dimensional parameter x
with d > 1. They are important in many applications and are used, for example, to model
properties of biological tissue, velocity fields in turbulent flows and permeability coefficients of
rocks. Mark 24 of the NAG Fortran library includes new routines for generating realisations of
stationary Gaussian random fields using the method of circulant embedding. This short note
illustrates the main ideas behind circulant embedding and how to use the routines g05zr and
g05zs in the NAG toolbox for MATLAB. The routines g05zm, g05zn and g05zp can also be
used to generate realisations of stationary Gaussian stochastic processes (the d = 1 case).!

Random Fields

For a two-dimensional domain D C R?, a (real-valued) random field {Z(x) : x € D}, also
written Z(x,w), is a set of real-valued random variables on a probability space (£2, F,P). That
is, for each x € D, Z(x) :  — R is a random variable. The random field is second-order if
Z(x) has finite variance for each x € D and for such fields we can define the mean function
u(x) = E[Z(x)] and the covariance function

Clxy) = Cov(Z(x), 2(y)) = E [ (2(0) - () (2) —n(v))| . =y eD.

Important cases are stationary random fields, where p(x) is constant and the covariance de-
pends on x —y and isotropic random fields, where the covariance depends on ||x — y||2.

For a fixed w € 2, the associated realisation of a random field is the deterministic function
f: D — R defined by f(x) := Z(x,w) for x € D. Thus, a realisation represents one possibility
for the quantity Z as a function of x. Examples are given in Figures 2 and 3, later. If Z(x,w)
represents an input for a mathematical model such as a system of PDEs, then we often need
to generate multiple realisations of Z(x,w) so that statistical analysis of the solution can be
performed (e.g., using Monte Carlo methods).

Gaussian Random Fields

A Gaussian random field is a second-order field such that the vector of random variables
7= [Z(X1)> Z(X2)> ceey Z(XN)]T

follows the multivariate Gaussian distribution for any xi,...,xy € D. That is, Z ~ N(u,C)
where the mean vector p and the covariance matrix C have entries p; = pu(x;) and

cij = C(x4,%5),  4,j=1,...,N.

The matrix C' is, by definition, symmetric and nonnegative definite. By choosing N sample
points x; on D, we can generate discrete realisations of Gaussian random fields Z(x,w) by
drawing samples of Z. We focus on the case p(x) = 0 so that o = 0. A useful observation is
that a pair of independent samples from N(0,C) can be drawn simultaneously by taking the
real and complex parts of Y ~ C'N(0,2C') (a sample from the complex Gaussian distribution).

!These routines were developed as part of the NAG-sponsored PhD project of Phillip Taylor at the University
of Manchester, supervised by Tony Shardlow (University of Bath) and Catherine Powell.



Toeplitz and Circulant Matrices

An N x N matrix C'is Toeplitz if the entries along each diagonal are the same. A circulant
matrix is a Toeplitz matrix for which each column is a circular shift of the elements in the
preceding column (so that the last entry becomes the first entry). Consider,
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The matrix on the left is symmetric and Toeplitz while the matrix on the right is symmetric
and circulant. Symmetric Toeplitz matrices can always be extended to give symmetric circulant
matrices by padding them with extra rows and columns. For example,

W N =
DD = DN
=N W

Notice that we only need to store the first column of a symmetric Toeplitz or circulant matrix to
generate the whole matrix. Similarly, symmetric block Toeplitz matrices with Toeplitz blocks
(BTTB matrices) can always be extended to form symmetric block circulant matrices with
circulant blocks (BCCB matrices). These can also be stored in a handy reduced format.

Circulant and BCCB matrices can be factorised using discrete Fourier transforms. In partic-
ular, any BCCB matrix B has the decomposition B = WAW™ where W is the two-dimensional
Fourier matrix and A is the diagonal matrix of eigenvalues. If B is a valid covariance matrix
(i.e., symmetric and nonnegative definite), then samples can be drawn from CN(0,2B) easily.
Since none of the eigenvalues are negative, A2 is well defined. We can then compute

Y = WAY2¢, where & ~ CN(0,21).

It is easy to show that Y ~ C'N(0,2B) and hence Z; = Re(Y) and Zs = Im(Y) are indepen-
dent N (0, B) samples. Multiplications with W can be performed by applying discrete Fourier
transforms and A can be obtained by applying an inverse discrete Fourier transform to the
reduced version of B. These observations are the basis of the circulant embedding algorithm.

Gaussian Random Fields with Stationary Covariance

In general, the N x N covariance matrix C' associated with a Gaussian random field on
a two-dimensional domain D is not a BCCB matrix. However, if the sample points x; are
uniformly spaced and the covariance function is stationary, then C' is always a BTTB matrix.

Suppose D = [Tpmin, Tmaz] X [Ymin, Ymaz] and divide D into n; X ng rectangular elements.
Choose the N = nins sample points to be the mid-points and order these lexicographically. If
the covariance function is stationary then C'(x;,x;) = v(x; —x;) where y(x) is a one-parameter
function. Since the spacings in the x and y directions are constant, C' is a BTTB matrix with
ng X ng Toeplitz blocks of size ny x ny. Consider the exponential covariance function

Coxy) = o (V) yxy),

where v(x) = 02 exp(—||x||2/¢) and choose the variance and correlation length, respectively, to
be 02 = 1 and ¢ = 1. Figure 1 illustrates the BTTB covariance matrices associated with two
distinet uniform grids on D = [0, 1] x [0, 1]. The Toeplitz structure is clearly visible.
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Figure 1: MATLAB imagesc plots of the N x N covariance matrices C associated with ~(x) =
exp(—||x||2) and a uniform grid of N = n; X ny points on D = [0, 1] x [0, 1] with ny = ny = 16 (left) and
ny = 16,ny = 8 (right). The matrix on the left is BTTB with 16 x 16 Toeplitz blocks of size 16 x 16.
The matrix on the right is BTTB with 8 x 8 Toeplitz blocks of size 16 x 16.

Circulant Embedding

Circulant embedding can be used to generate realisations of stationary Gaussian random
fields provided the sample points are uniformly spaced. Since the associated N x N covariance
matrix C' is BTTB and any BTTB matrix can be embedded inside a larger M x M BCCB
matrix B, then samples of Z ~ N(0,C) can be obtained from samples of Z ~ N(0, B) (by
simply discarding some entries of the vector). Independent samples of Z can be obtained from
the real and imaginary parts of Y ~ C'N (0, 2B) using discrete Fourier transforms, as explained
above. The only difficulty is that for a fixed M, the extended BCCB matrix B is not necessarily
a valid covariance matrix, so A1/2 may not be well defined. B needs to be nonnegative definite.
A check on the eigenvalues reveals whether this is the case. If there are negative eigenvalues,
then a larger BCCB matrix B must be found that is nonnegative definite.

For some stationary covariance functions 7(x), it is not possible to construct a nonnegative
definite BCCB embedding matrix B of a feasible size. In that case, we must be content with
samples from an approximate distribution N (0,6) where C is ‘close’ to the true covariance
matrix C. Given a BCCB extension matrix B, we have

B — WA+W* + WA7W* — B+ ‘l‘ B,

where A = Ay + A_ is decomposed into two diagonal matrices. Ay contains the positive
eigenvalues of B and has a zero on the diagonal where negative values occur in A. Similarly,
A_ contains the negative eigenvalues. One possibility is to approximate B by By. The samples
obtained using the BCCB matrix By come from an approximate distribution N (0, C ) where
the covariance error ||C' — C||2 depends on the size of the neglected negative eigenvalues.

NAG routines g05zr and g05zs

For a library of standard stationary covariance functions y(x) (including the exponential,
Gaussian, Whittle-Matérn and Bessel covariance functions), the NAG routine g05zr constructs
a BCCB extension B of the BTTB covariance matrix C associated with a user-defined grid of



N = ning points on D = [Zmin, Tmaz) X [Ymin, Ymaz)- It is also possible to work with other
stationary covariance functions by using the routine g05zq to define a non-standard ~(x). The
maximum size allowed for the BCCB extension matrix is M x M, where M = mimo and m1, ms
are supplied by the user. The square roots of the eigenvalues of B are returned by g05zr. The
NAG routine g05zs can then be used to produce samples from N(0,C) if all the eigenvalues

~

are nonnegative or from an approximate distribution N(0,C'), otherwise.

Example: Exponential Covariance

Figure 2: Realisations of a mean zero Gaussian random field on D = [0, 1] x [0, 1] with the exponential
covariance function v(x) = exp(—||x||2/¢) with correlation length ¢ =1 (top) and ¢ = 1/10 (bottom).

Let D = [0,1] x [0,1] and select a grid of N = 256 x 256 uniformly spaced sample points.
To generate realisations of a mean zero Gaussian random field with the stationary covariance
function C(x,y) = v(x —y) where y(x) is the exponential function

o=t () oo (- ()7 (2)),

we must first call g05zr. In the NAG toolbox for MATLAB, this can be done by calling




the function nag rand _field 2d_predef_setup. To define the sample points and choose the
exponential covariance with 02 = 1 and ¢ = 1, the required inputs are:

>> ns=[int64(256) ,int64(256)]; xmin=0; xmax=1; ymin=0; ymax=1;
>> var=1; icov2=int64(4); params=[1,1]; norm=int64(2);

To define the maximum size of the circulant embedding matrix, we can set, for example,
>> maxm=[int64(4096) ,int64(4096)1];

This produces a BCCB matrix B which is no larger than 40962 x 40962. Finally, to control
how approximate embedding is done, we need to specify icorr. To replace B by B, we set

>> icorr=int64(2);
With all the inputs defined, we can now call g05zs via the MATLAB command

>> [lam, xx, yy, m, approx, rho, icount, eig, ifail] = ...
nag_rand_field_2d_predef_setup(ns, xmin, xmax, ymin, ymax, maxm,
var, icov2, params, ’icorr’, icorr,’norm_p’, int64(2));

The eigenvalues of B are stored in lam, the grid points in xx and yy and the output approx
indicates whether approximation is necessary. In this case, approx=0 and no approximation is
needed. Note however that the smallest BOCCB embedding matrix that is nonnegative definite
is of size 40962 x 40962 so if smaller dimensions are set for maxm, then approximate embedding
1s performed. By specifying the number of realisations s to generate, and the current state of
the random number generator, g05zs can be called as follows.

>> [state, z, ifail] = nag_rand_field_2d_generate(ns, s, m, lam, rho, state);

The resulting realisations of the mean zero Gaussian random field are shown in Figure 2.

Example: Gaussian Covariance

Once again, let D = [0,1] x [0, 1] and select N = 256 x 256 uniformly spaced sample points.
Consider C'(x,y) = v(x — y) where v(x) is the so-called Gaussian function

0=t (L) = (- ()" ().

To define this covariance function with ¢ = 1 and ¢? = 1/10, the inputs for g05zr are:

>> var=1; icov2=int64(5); params=[1/sqrt(10),1/sqrt(10)]; norm=int64(2);

This time, if we set maxm=[int64(4096) ,int64(4096)], then approximation is required. The
BCCB extension matrix B of dimension 40962 x 40962 has negative eigenvalues. However, the
smallest negative eigenvalue is O(10~!1). By specifying icorr=int64(2), approximate samples
are generated by replacing B with B,.. Since all the negative eigenvalues of B are actually very
small, the covariance error is acceptable. The resulting approximate realisations of the mean
zero Gaussian random field are shown in Figure 3.



Figure 3: Approximate realisations of a mean zero Gaussian random field on D = [0, 1] x [0, 1] with
the Gaussian covariance function v(x) = exp(—||x||3/¢?) with correlation length ¢ = 1/10 (top) and
£? =1/1000 (bottom).
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