
Calling the NAG Fortran Library for Windows
x64 DLLs from VB.NET

Users who have Microsoft Visual Studio 2005 or 2008 may use the DLLs provided with the NAG Fortran
Library for Windows XP/Vista/7 x64 (FLW6I22DC_nag.dll and FLW6I22DC_mkl.dll) in conjunction
with VB.NET.

In this report, we will see the rules one has to follow to use the NAG routines from VB.NET and then we
will illustrate those rules with examples.

The examples and Declare statements referred to in this report use the self-contained DLL,
FLW6I22DC_nag.dll. To call NAG Fortran Library routines in a different DLL which uses the same
calling conventions (for example, FLW6I22DC_mkl.dll), simply replace "FLW6I22DC_nag.dll" in the
Declare statements by the name of the DLL you wish to use.

Note that the NAG DLLs will need to be on your path and, if you are using (say) an MKL-based DLL
such as FLW6I22DC_mkl.dll, the MKL DLLs will also need to be on the path. Please refer to the Users'
Note for details.

Contents

1. Rules to call the routines in FLW6I22DC_nag.dll from VB.NET
2. Calling a routine with scalar arguments and a call-back function
3. Calling a routine with array arguments
4. Calling a routine with CHARACTER arguments

1 - Rules to call the routines in FLW6I22DC_nag.dll from VB.NET

To call a routine contained in the DLL, you will need to define it in a Declare statement. This
Declare statement contains the name of the routine, the name of the DLL in which to look for it
and the definition of its arguments.

The NAG Fortran Library Documentation is available at
http://www.nag.co.uk/numeric/FL/FLdocumentation.asp
and contains all the necessary information about routine arguments.

The definition of those arguments has to follow some rules:
• All scalar values are passed by reference (ByRef).
• All arrays are passed by value (ByVal) and have one of the following decorations: <[In]

()>, <[Out]()> or <[In](),Out[]()> depending on what is expected from the Fortran
point of view. Moreover, VB.NET and Fortran don't store arrays in memory in the same
way (Fortran is column-wise whereas VB.NET is row-wise). All arrays in VB.NET must
be transposed before calling Fortran subprograms.

• When the Fortran expects a scalar argument of the type CHARACTER*, the actual VB.NET
argument is a String, passed by value (ByVal). The length of this String must be passed
at the end of the argument list.

• When the Fortran expects an array argument of the type CHARACTER*, the actual VB.NET
argument is a single String in which all the array elements are concatenated. It is passed
by value (ByVal). The length of one element of the array must be passed at the end of the
argument list.

• When the Fortran expects a call-back function as argument, an interface must be declared

http://www.nag.co.uk/numeric/FL/FLdocumentation.asp

on the VB.NET side by defining a Delegate Function and the routine argument is passed
by value (ByVal) as being of the type of this Delegate function. When calling the Fortran
routine from VB.NET, the function implementing the Delegate interface will be passed as
an argument using the keyword AddressOf.

For these declarations to be recognised by VB.NET, the following line is needed at the top of the
VB.NET source code:

Imports System.Runtime.InteropServices

This zip file contains a VB.NET module including the Declare statements for all the library rout-
ines.

You may also need the Intel Fortran Runtime DLLs included in this zip file if you don't have the
Intel Fortran Compiler installed.

Here are a few examples illustrating how to call NAG Fortran Library routines from VB.NET.
The source code for all these examples is available here.

2 - Calling a routine with scalar arguments and a call-back function

The NAG Fortran Library routine called here is D01BDF. According to the NAG Fortran Library
documentation, this routine has the following Fortran prototype:

SUBROUTINE D01BDF(F, A, B, EPSABS, EPSREL, RESULT, ABSERR)
double precision F, A, B, EPSABS, EPSREL, RESULT, ABSERR
EXTERNAL F

All the arguments are scalar except for F which is an EXTERNAL function returning a double
precision value.

More precisely, the documentation indicates that the Fortran interface for F is:

double precision FUNCTION F(X)
double precision X

The first thing to do is to declare the VB.NET prototype for this call-back function. In this case it
will be a Delegate Function returning a Double and taking a Double as argument. Its declara-
tion will be:

Delegate Function D01BDF_F_DELEGATE(_
 ByRef X As Double _
) as Double

Now that the Delegate function is known, the Declare statement for D01BDF can be easily
written:

Declare Sub D01BDF Lib "FLW6I22DC_nag.dll" (_
 ByVal F As D01BDF_F_DELEGATE, _
 ByRef A As Double, _
 ByRef B As Double, _
 ByRef EPSABS As Double, _
 ByRef EPSREL As Double, _
 ByRef RESULT As Double, _
 ByRef ABSERR As Double _
)

All the scalar arguments are passed by reference and the call-back function F is passed by value as
being of the type of the Delegate function.

VB.NET_examples.zip
Intel_fortran_runtime_dll.zip
nag_vb_net_declare_statements.zip

Below is a short VB.NET program calling D01BDF:

Option Explicit On
Imports System.Math
Imports System.Text
Imports System.Runtime.InteropServices
Imports System.Reflection
Imports System.IO
Imports Microsoft.VisualBasic

Module Module1

Delegate Function D01BDF_F_DELEGATE(_
 ByRef X As Double _
) as Double

Declare Sub D01BDF Lib "FLW6I22DC_nag.dll" (_
 ByVal F As D01BDF_F_DELEGATE, _
 ByRef A As Double, _
 ByRef B As Double, _
 ByRef EPSABS As Double, _
 ByRef EPSREL As Double, _
 ByRef RESULT As Double, _
 ByRef ABSERR As Double _
)

Sub Main()
 Const A As Double = 0.0#, B As Double = 1.0#
 Dim epsabs As Double, epsrel As Double
 Dim myres As Double, abserr As Double
 Dim strResult As New StringBuilder

 epsabs = 0.0
 epsrel = 0.0001

 'THE KEYWORD AddressOf IS USED TO PASS FUN AS ARGUMENT
 Call D01BDF(AddressOf FUN, A, B, epsabs, epsrel, myres, abserr)

 strResult.Append("D01BDF Example Results" & vbCrLf)
 strResult.Append(vbCrLf & "Result of Integration" & vbCrLf)
 strResult.Append(myres)
 MessageBox.Show(strResult.ToString)
 strResult = Nothing

 End Sub

 Function FUN(ByRef x As Double) As Double
 FUN = x * x * Sin(10 * PI * x)
 Exit Function
 End Function
End Module

3 - Calling a routine with array arguments

Here the Fortran routine that is to be called is G02BAF. According to the NAG Library
Documentation this routine is declared in the following manner:

SUBROUTINE G02BAF(N, M, X, LDX, XBAR, STD, SSP, LDSSP, R, LDR, IFAIL)
INTEGER N, M, LDX, LDSSP, LDR, IFAIL
double precision X(LDX,M), XBAR(M), STD(M), SSP(LDSSP,M), R(LDR,M)

Once again according to the documentation, the INTENT attributes for the arrays are:
• X INTENT(IN)
• XBAR INTENT(OUT)

• STD INTENT(OUT)
• SSP INTENT(OUT)
• R INTENT(OUT)

With all those details, it is possible to determine the following Declare statement for G02BAF:

Declare Sub G02BAF Lib "FLW6I22DC_nag.dll" (_
 ByRef N As Integer, _
 ByRef M As Integer, _
 <[In]()> ByVal X As Double(,), _
 ByRef LDX As Integer, _
 <[Out]()> ByVal XBAR As Double(), _
 <[Out]()> ByVal STD As Double(), _
 <[Out]()> ByVal SSP As Double(,), _
 ByRef LDSSP As Integer, _
 <[Out]()> ByVal R As Double(,), _
 ByRef LDR As Integer, _
 ByRef IFAIL As Integer _
)

Here the Fortran INTENT attributes have been specified in the VB.NET source code with <[IN]
()> or <[OUT]()>. If the Fortran INTENT attribute was INTENT(INOUT), the matching VB.NET
source code would be <[IN](),OUT[]()>.

Below is the conversion of Fortran example program g02bafe.f showing the use of G02BAF from
VB.NET.

Option Explicit On
Imports System.Math
Imports System.Text
Imports System.Runtime.InteropServices
Imports System.Reflection
Imports System.IO

 Imports Microsoft.VisualBasic

Module Module1
 Declare Sub G02BAF Lib "FLW6I22DC_nag.dll" _
 (ByRef N As Integer, ByRef M As Integer, _
 <[In]())> ByVal X As Double(,), _
 ByRef LDX As Integer, _
 <[Out]()> ByVal XBAR As Double(), _
 <[Out]()> ByVal STD As Double(), _
 <[Out]()> ByVal SSP As Double(,), _
 ByRef LDSSP As Integer, _
 <[Out]()> ByVal R As Double(,), _
 ByRef LDR As Integer, ByRef IFAIL As Integer)

 Sub Main()
 Dim M As Integer = 3
 Dim N As Integer = 5
 Dim IA As Integer = N
 Dim ISSP As Integer = M
 Dim ICORR As Integer = M

 Dim I As Integer
 Dim IFAIL As Integer
 Dim J As Integer

 Dim A(M - 1, IA - 1) As Double
 Dim AMEAN(M - 1) As Double
 Dim CORR(M - 1, ICORR - 1) As Double
 Dim SSP(M - 1, ISSP - 1) As Double

 Dim STD(M - 1) As Double

 'START DATA INITIALISATION - THE ARRAY A IS TRANSPOSED

 A(0, 0) = 2.0
 A(0, 1) = 4.0
 A(0, 2) = 9.0
 A(0, 3) = 0.0
 A(0, 4) = 12.0

 A(1, 0) = 3.0
 A(1, 1) = 6.0
 A(1, 2) = 9.0
 A(1, 3) = 12.0
 A(1, 4) = -1.0

 A(2, 0) = 3.0
 A(2, 1) = 4.0
 A(2, 2) = 0.0
 A(2, 3) = 2.0
 A(2, 4) = 5.0

 'END DATA INITIALISATION

 Console.WriteLine("G02BAF Example Program Results")
 Console.WriteLine("Number of variables (columns) = " & M)
 Console.WriteLine("Number of cases (rows) = " & N)
 Console.WriteLine()
 Console.WriteLine("Data matrix is:")
 For J = 1 To M
 Console.Write(" " & J)
 Next

 Console.WriteLine()

 For I = 0 To N - 1
 For J = 0 To M - 1
 Console.Write(Format(A(J, I), "###0.0") & " ")
 Next
 Console.WriteLine()
 Next

 IFAIL = 1
 'CALL TO THE NAG LIBRARY ROUTINE
 Call G02BAF(N, M, A, IA, AMEAN, STD, SSP, ISSP, CORR, ICORR, IFAIL)

 If (IFAIL <> 0) Then
 Console.WriteLine("Routine fails, IFAIL = " & IFAIL)
 Else
 Console.WriteLine("Variable Mean St. dev.")
 For I = 0 To M - 1
 Console.Write(" " & Format((I + 1), "###0"))
 strResult.Append(" ")
 Console.Write(Format(AMEAN(I), "###0.000"))
 strResult.Append(" ")
 Console.WriteLine(Format(STD(I), "###0.000"))
 Next
 Console.WriteLine()
 Console.WriteLine _
 ("Sums of squares and cross-products of derivations")
 For I = 0 To M - 1
 For J = 0 To M - 1
 Console.Write(Format(SSP(J, I), "###000.00") & " ")
 Next
 Console.WriteLine()
 Next
 Console.WriteLine("Correlation coefficients")

 Console.WriteLine()
 For I = 0 To M - 1
 For J = 0 To M - 1
 Console.Write(Format(CORR(J, I), "###0.000") & " ")
 Next
 Console.WriteLine()
 Next
 End If
 Console.ReadLine()

 End Sub

End Module

The results can then be compared with the results provided with the NAG Fortran Library or
alternatively in the NAG Fortran Library Documentation.

4 - Calling a routine with CHARACTER arguments

The NAG Fortran Library routine which will be studied here is M01CCF. According to the NAG
Fortran Library Documentation, its Fortran protoype is:

SUBROUTINE M01CCF(CH, M1, M2, L1, L2, ORDER, IFAIL)
INTEGER M1, M2, L1, L2, IFAIL
CHARACTER*(*) CH(M2)
CHARACTER*1 ORDER

It is then possible to define the matching Declare statement:

Declare Sub M01CCF Lib "FLW6I22DC_nag.dll" (_
 ByVal CH As string, _
 ByRef M1 As Integer, _
 ByRef M2 As Integer, _
 ByRef L1 As Integer, _
 ByRef L2 As Integer, _
 ByVal ORDER As string, _
 ByRef IFAIL As Integer, _
 ByVal CHLength As Integer, _
 ByVal ORDERLength As Integer _
)

In this statement, there are two arguments of type String, the first one matching a
CHARACTER*(*) Fortran array and the second one a simple CHARACTER*1 Fortran variable. The
corresponding lengths to be passed are at the end of the argument list, in order of appearance.

The first length must be the length of one element of the array concatenated in CH and the second
is the actual length of ORDER.

The example below illustrates the use of this Declare statement:

Option Explicit On
Imports System.Math
Imports System.Text
Imports System.Runtime.InteropServices
Imports System.Reflection
Imports System.IO
Imports Microsoft.VisualBasic

Module module1

Declare Sub M01CCF Lib "FLW6I22DC_nag.dll" (_
 ByVal CH As string, _
 ByRef M1 As Integer, _

 ByRef M2 As Integer, _
 ByRef L1 As Integer, _
 ByRef L2 As Integer, _
 ByVal ORDER As string, _
 ByRef IFAIL As Integer, _
 ByVal CHLength As Integer, _
 ByVal ORDERLength As Integer _
)

Sub Main()

 Dim ch(10) As String
 Dim ch_len As Integer
 Dim i As Integer, ifail As Integer, l1 As Integer, l2 As Integer, m As
Integer
 Dim strResult As New StringBuilder
 Dim ch_all As String

 ch(0) = "A02AAF 289"
 ch(1) = "A02ABF 523"
 ch(2) = "A02ACF 531"
 ch(3) = "C02ADF 169"
 ch(4) = "C02AEF 599"
 ch(5) = "C05ADF 1351"
 ch(6) = "C05AGF 240"
 ch(7) = "C05AJF 136"
 ch(8) = "C05AVF 211"
 ch(9) = "C05AXF 183"
 ch(10) = "C05AZF 2181"

 m = 11
 l1 = 7
 l2 = 12
 ifail = 1
 ch_all = ""

 'THE ARRAY TO SORT IS CONCATENATED IN ONE STRING
 For i = 0 To m - 1
 ch_all = ch_all & ch(i)
 Next

 'ch_len IS THE LENGTH OF ONE ELEMENT OF CH
 ch_len = 12

 M01CCF(ch_all, 1, m, l1, l2, "Reverse ASCII", ifail, ch_len,13)

 For i = 0 To m - 1
 ch(i) = ch_all.Substring(i * ch_len, ch_len)
 Next

 strResult.Append("M01CCF Example Results" & vbCrLf & vbCrLf)
 strResult.Append("Records sorted on columns " & l1.ToString)
 strResult.Append(" to " & l2.ToString & vbCrLf & vbCrLf)

 For i = 0 To m - 1
 strResult.Append(ch(i).ToString & vbCrLf)
 Next

 strResult.Append(vbCrLf & "ifail on exit = " & _
 ifail.ToString & vbCrLf)
 MessageBox.Show(strResult.ToString)
 strResult = Nothing

 End Sub
End Module

	Contents

